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1 Introduction

This study presents a detailed analysis of the replacement decisions of a large, successful rental car com-

pany that buys new vehicles and rents them to series of customers who choose between long and short

term rental contracts. Besides the size and composition of its rental fleet and the rental rates it charges,

a key operating decision that the company makes is the timing of vehicle sales. We focus on the latter

decision, and the costs and benefits of keeping a rental car longer versus the alternative of selling it rela-

tively quickly. Due to the rapid depreciation in the resale prices of cars, replacing vehicles too quickly can

reduce profits by increasing trading costs and reducing rental revenues.

This company is by any measure extremely successful in the rental car business: the average gross

internal rate of return it earns on cash flows from the initial purchase of a vehicle to its ultimate sale is

approximately 50%.1

In economic theory, the “standard hypothesis” is that firms choose operating strategies that maximize

the expected discounted value of cash flows arising from their operations. Given how successful this firm

appears to be in the rental car business, it is natural to suppose that this firm is maximizing profits. This is

the basic hypothesis we intend to “test” in this analysis. To do this, we develop a stochastic semi-Markov

duration model of the company’s operations, and via stochastic simulations, show that the model closely

mimics the outcomes experienced by this company under its current operating strategy, which is to adopt

“flat” rental rates (i.e. fixed per day rental charges that do not decline with the age or odometer value of

the vehicle) and to replace old vehicles with brand new ones after approximately three years of operation.

In particular, our model replicates the high internal rates of return earned by this company on its rental

vehicles. Thus, we argue that our stochastic model provides a good representation of the operations and

replacement decisions of this company under its status quo operating strategy.

Using our model, we can evaluate the profitability of a wide range of alternative replacement and rental

pricing strategies. Conditional on certain assumptions about rental rates (i.e. namely that they are fixed

at the firm’s current values, except for discounts offered to customers who choose to rent older vehicles)

and replacement decisions (i.e. we assume that when the firm replaces an existing vehicle it purchases a

1The internal rate of return is defined as the interest rate that equates the present value of cash inflows and cash outflows
— i.e. it is the “breakeven” discount rate where the net present value of an investment in a rental car equals zero. The
reported internal rates of return are based on gross cash flows, i.e. they have not be adjusted to account for taxes and
administrative and insurance costs. Internal rates of return based on net after tax cash flows would be somewhat lower than
the gross internal rates of return, but are still extremely high. Our impression is that these rates of return are much higher
than typical rates of return earned on investments involving comparable degrees of risk.
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brand new replacement vehicle, rather than a slightly used vehicle at a large discount over the price of a

brand new car), we characterize the profit maximizing replacement strategy by formulating the problem

of periodic replacement of vehicles in the company’s fleet as a regenerative optimal stopping problem.

We employ numerical methods to compute the optimal replacement strategy, using the econometrically

estimated resale price functions, maintenance costs, and hazard rates and transition probabilities governing

movement of cars between long and short term rental spells and lot spells. It turns out that the optimal

strategy predicted by our model is sensitive to assumptions about aging effects of vehicles — effects that

are hard to extrapolate outside of our current sample of data due to the fact that this company replaces its

vehicles relatively frequently, typically after three years of service life.

The most obvious aging effect is the rapid decline in the resale price of a car as a function of its age (or

odometer value). However with respect to other measures of the condition of the car such as maintenance

costs or the duration of rental spells, our econometric analysis finds few other clear aging effects for

vehicles in this company’s fleet, at least within the three year horizon over which it keeps them. Thus,

although customers prefer newer cars to older ones, the company does not discount daily rental rates as a

function of the age or odometer of the vehicle so there there is no “aging effect” in its rental rates. We also

do not find any evidence of an upward trend in maintenance costs as a function of the age and odometer

of the vehicle. Lastly, we do not find any evidence of age or odometer dependence in mean duration of

vehicles in rental contracts, or for cars in lot spells waiting to be rented.

Beside the rapid depreciation in resale price, the only aging effect that we find from our econometric

analysis is that newer cars tend to start out in long term rental contracts at the start of their life and are

gradually switched to an increasing share of short term rental contracts toward the end of their lives. We

find that long term contracts have a high probability of “roll over” and thus, the cars which start out in

long term rentals tend to spend less time in the lot compared to cars that are in short term rentals. Thus,

as vehicles age, there is an increasing probability that they will be rented in short term contracts, and as a

result, there is a higher probability that older car will be idle due to the greater probability of being in a lot

spell between successive short term rental spells.

However if this “contract composition age effect” and the rapid depreciation in resale values are the

only aging effects, our optimal stopping model predicts that the company should never replace its vehicles.

Instead, the optimal replacement policy entails maintaining the existing stock of vehicles indefinitely.

However this result depends on the assumption that consumers do not mind driving arbitrarily old vehicles,

and that the company does not incur rapidly increasing maintainance costs to enable them to “live” forever.
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Company executives believe that its customers expect to rent “new” vehicles, and this appears to be the

main consideration underlying their three year vehicle replacement target. However it seems plausible that

many customers might not consider cars that are more than one year old to be “new” yet more 90% of the

cars we studied were two years or older, and approximately 40% were three years or older. Nevertheless,

the company is able to rent these older vehicles without providing any discount to its customers. While we

have no direct evidence of the magnitude of the reductions in rental rates that would be required to make

customers indifferent between renting “new” vehicles at the company’s current rental rates and vehicles

that they consider to be “old” we show that even when extremely deep (and we think implausibly large)

discounts in rental rates are used to induce customers to rent older vehicles, the optimal replacement strat-

egy entails keeping vehicles roughly twice as long (measured either in terms of vehicle age or odometer at

time of sale) than the company currently keeps them.

Depending on the type of vehicle analyzed, we find that expected discounted profits would be at least

6% higher, and as much as 140% higher under this alternative operating strategy than the company’s

existing operating strategy. Further, the actual increase in profits could be significantly higher than the

values we predict due to our extremely conservative assumptions about the size of discounts and magnitude

of maintenance costs for older vehicles. We have made strong, and we think implausibly pessimistic,

assumptions about the required discounts in rental rates and the rate of increase in maintenance costs in

order to create a strong implicit bias against holding older vehicles. Nevertheless, the model predicts that

under an optimal strategy, the firm should keep its vehicles for much longer than it currently does.

Specifically, we have assumed that maintenance costs suddenly increase at a very rapid rate after

130,000 kilometers, so that the average daily maintenance costs for a vehicle with 400,000 kilometers

is 11 times the average daily maintenance cost of a vehicle at 130,000 kilometers. We also assume that

the firm must discount the rental rates it charges to customers to induce them to rent older vehicles. We

assume that daily rental rates for both long and short term rentals are reduced at a linear rate as a function

the vehicle’s odometer starting at 130,000 kilometers, until they reach 0 for vehicles with 400,000 or more

kilometers on their odometers. This implies that the daily rental rate for a vehicle with 265,000 kilometers

is only 1/2 the daily rental rate that the company earns for its vehicles under its existing “flat rental

schedule”. We note that company does have a small number number of vehicles with more than 265,000

kilometers on their odometers, but nevertheless rents them at the full daily rental rates. This, combined

with the evidence provided by the company’s “experiment” suggests that it is unnecessary to reduce rental

rates by this much to give customers sufficient incentive to rent older vehicles.
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Indeed, the company did previously experiment with discounts in rental rates for older vehicles, but

discontinued the experiment because too many customers were choosing older vehicles in preference to

renting the newer cars in their fleet. The experiment involved a 20% discount in daily rental rates for any

vehicle over two years old. We view this as evidence that 20% discount was too large, and that with lower

discounts, the company could succeed in inducing customers to rent old vehicles without jeopardizing its

ability to rent its newer cars at the existing full rental rates. We believe that a moderate age or odometer-

based discounting strategy could lead to a “win-win” situation: it could enable the company to increase its

profits while at the same time providing a wider range of choices and benefits to its customers. Customers

would benefit since they can always choose the default of renting a newer car at the full rental rate. How-

ever many customers may prefer to rent an older vehicle at a reduced rental rate, and these customers will

be strictly better off under this alternative rental rate structure. The company would benefit from being

able to keep vehicles in its fleet longer, and thus earn more rental revenue over a longer holding period

that would help to “amortize” the high trading costs it incurs from the rapid initial depreciation in vehicle

prices. Thus, by appropriately discounting its rental rates, the company should be able to significantly

increase its profits without risking its reputation and the good will of its customers.

Section 2 describes the rental car data. Section 3 presents an econometric model of the company’s oper-

ations and provides our econometric estimates of the our models of vehicle resale prices, durations in rental

and lot spells, and transitions between spells. Section 4 shows, via stochastic simulations, that this model

provides a good approximation to the company’s behavior/outcomes under its status quo operating strat-

egy. Section 5 formulates and solves a dynamic programming problem that provides the profit-maximizing

operating strategy under certain “maintained” assumptions about rental rates, and other constraints on re-

placement decisions by this company. Section 6 compares actual and predicted optimal operating strate-

gies, discounted profits, and rates of return for 3 different makes, models and rental locations of vehicles.

Section 7 discusses extensions of this analysis to issues of optimal selling strategy (i.e. whether the com-

pany should sell one of its vehicle regardless of what price is offered for it, or whether the company should

adopt a “reservation price” sales strategy to achieve a higher resale value for its rental cars), and fleet

allocation (i.e. whether the company should reallocate its portfolio of rental cars, increasing holdings of

certain types of cars and decreasing holdings of others). Section 8 presents conclusions, including our

views of the contributions and limitations of this analysis and some of the issues that arise in the experi-

mental and quasi-experimental validation of the predicted increase in profits from our suggested changes

in the firm’s operating strategy.
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2 Data

We obtained data from a large syndicated rental car company that owns and rents a large fleet of rental

vehicles in over 100 different locations in its region of operation, which include urban locations (e.g. car

rental facilities in main cities and near major airports) and tourist areas. Due to confidentiality agreements

we have with this company, we are unable to disclose the name of the company, the rental syndicate it is

part of (e.g. Avis, Hertz, National/Alamo, etc.) or further details about its location.

The company provided us with data on over 3900 individual vehicles at various rental locations. These

do not represent the entire fleet at any point in time, but they do represent a significant share of the com-

pany’s holdings. All of these vehicles were first acquired (i.e. registered) after 1999, and almost all of

these vehicles were purchased brand new from auto manufacturers. Purchase times of individual vehicles

are fairly evenly spread out in time. While there are occasional “group purchases” of particular brands

and models of vehicles on the same date, when these group purchases did occur, they typically amounted

to only 4 or 5 vehicles of the same brand/model at the same time. Thus, this company by in large fol-

lows an individual vehicle replacement and acquisition strategy, as opposed to “block acquisitions and

replacements” i.e. simultaneously acquiring and disposing of large groups of vehicles of the same make

and model at the same time.

The data consist of information on date and purchase price for each vehicle it acquired, the date and

odometer value when the vehicle was sold, and the complete history of maintenance and rentals between

the purchase and sale dates. The rental contract data record the dates each contract started and ended, and

(sometimes) the odometer value of the vehicle at the start and end of the rental contract. We found (with

the exception of the odometer value at the date each vehicle was sold, which was accurately recorded),

the company’s data on odometer values at the beginning and end of each rental contract to be frequently

missing or based on guesses by the company’s rental agents. This was especially true for long term

contracts that were rolled over, where rental agents appear to have filled in rough estimates of the out and

in odometer values at the rollover dates where the customer decided to keep the car another month. As a

result, we did not trust most of the in or out odometer readings in the company’s rental records. In order

to infer the driving patterns and number of kilometers typically travelled during each rental contract we

relied on some (we believe reasonable) econometric modelling assumptions that we will describe shortly.

The company also provided us with records on the date of accidents and the cost of repairing accident

damage, as well as decisions to scrap (versus sell) vehicles that were sufficiently badly damaged as a result
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of accidents. Although 2543 of the 3908 vehicles in the data set experienced one or more accidents over

the service lives, only 123 vehicles were sufficiently badly damaged that they had to be scrapped. In almost

all cases where accidents have occurred, the cost of repairing the damage to the vehicle is covered by the

insurance of the renter (if the renter was at fault), the insurance of the other party to the accident (if they

were at fault), or by the company’s insurance (if the party at fault has no insurance).

There is a potential indirect source of financial loss due to accidents that the company is not compen-

sated for, namely, if the resale price for cars with accidents is lower. However this effect can be expected

to be small, since whenever an accident is repairable, the insurance pays all necessary repairs to restore the

car to its pre-accident condition. The company is required to report the number of accidents and informa-

tion on the nature of each accident (severity, cost of repair and so forth) that a vehicle experienced at the

time it is sold. However the econometric evidence we offer below shows that neither the total number of

accidents, nor the total cost of repairing these accidents is a significant predictor of resale prices. The two

most important predictor variables (besides the make/model of vehicle) are the vehicle’s age and odometer

value at time of sale.

The firm rents its cars on two types of contracts: a long term contract or a short term contract. Long

term contracts are typically written with a maximum duration of one month, combined with a right to

automatically roll over (i.e. renew) the previous contract for another month. Rental contracts are at a daily

rate with no additional charges for distance travelled during the contract. The daily rate for a long term

contract is typically lower than the daily rate for short term contracts. There is a penalty for early returns

of vehicles in long term contracts, generally equal to 20% of the lost rental revenue for the unfinished

remaining days in the contract.

We are not familiar with the exact terms of the long term rental agreement, but we presume that the

company retains the right not to automatically roll over a contract at the end of a previous one if it decides

to sell the vehicle. Thus, in our model, we assume that on the first day of any long term contract, the

company can decide to sell the car and provide the customer with a substitute vehicle of the same make

and model. However if the company decides not to sell the car on the date a contract rolls over, it must

wait until the end of the next contract (or when the car comes back, if the customer decides to return it

before the end of the contract period) before it can sell the car. We assume that the company can sell the

car at any time it pleases if it is in a lot spell, i.e. not currently in the middle of short term or long term

rental spell.

Figure 1 illustrates typical rental histories for three different cars in the company’s fleet: 1) a compact
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Figure 1 Typical Rental Histories for Three Cars in the Company Fleet

car rented from one of the company’s urban locations, 2) a luxury car rented from an urban location, and

3) recreational vehicle rented from a “tourist” location. In the graphs, a value of ‘0’ denotes a car that is

on the lot waiting to be rented, a value of 1 denotes a long term contract, and a value of 2 denotes a short

term contract.

We see that the compact and luxury cars that were rented from the urban location started out in a series

of long term rentals, with no intervening “lot spells” between the successive monthly rental contracts.

Quite possibly the succession of unbroken long term contracts could represent the same customer who

rolled over their monthly contracts into the de facto equivalent of a lease, lasting nearly one year in the

case of a compact and two years in the case of the luxury vehicle. After these long term contracts came

to an end, these vehicles were rented on a series of short term contracts, except that the compact car was

rented for a final long term contract episode for 30 days near the end of its service life. On the other hand

all of the rentals of the recreational vehicle (RV) in the tourist location were short term rentals, with most

contracts lasting only a few days.

Figure 1 also shows the exact service life and the realized internal rate of return (IRR) that the company
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earned on the vehicle over its service life. The IRR is defined at the discount rate r (where r is measured

on an annual basis) that sets the net present value of the cash flow stream earned by the company over the

vehicle’s service life equal to zero:

0 =
T

∑
t=0

exp{−at r/365}ct , (1)

where T is the number of days over which cash inflows or outflows occurred for the vehicle, ct is the cash

inflow (if positive) or outflow (if negative), and at is the number of days after the initial purchase of the

vehicle that the tth cash flow occurred. Thus, c0 < 0 and a0 = 0 represent the initial purchase of the car,

and then subsequent cash flows would be rental revenues received when the car returned at the end of each

rental contract, and cash outflows for maintenance on the dates they occurred. The final cash flow, cT > 0,

is the resale price the company receives from selling the car in the used car market, or at an auction. Thus,

aT represents the service life, i.e. the actual age of the car in days at which it was sold, assuming its initial

age was a0 = 0 (since all cars were purchased brand new).

We see that for each of the cars illustrated in figure 1, the realized rates of return are extraordinarily

high. The firm earned a 78.6% rate of return on the compact car, a 57.6% rate of return on the luxury

car, and a 96.6% rate of return on the recreational vehicle. The undiscounted profits are also high —

$16,683 for the compact, $24,753 for the luxury car, and $27,654 for the RV — especially in relation to

the initial purchase prices of these cars: $9011, $22808, and $17889, respectively. The odometer values

(in kilometers) on these cars at time of sale were approximately the same, 66300, 61000, and 63265,

respectively. However the depreciation rates experienced in the resale values (i.e. the ratio of resale price

to new price) of the three cars was quite different: 39%, 56%, and 56%, respectively. Thus, the compact

car experienced relatively greater price depreciation, but this could also be due to its being driven longer

(with a terminal odometer of 66300 and service life of 1115 days, it was approximately 10% older at time

of sale than the other two vehicles).

Figure 2 shows the distributions of internal rates of return for the same three classes of vehicles for

which individual rental histories were plotted in Figure 1. These distributions are for all cars for which

we have complete rental histories and include cars from all rental locations.2 We see that the high IRRs

shown in the particular rental histories in figure 1 are not atypical, although we do see a significant level of

variability in realized rates of return, and differences across the three car classes in the return distributions.

It is apparent in figure 2 that the compact class has the highest average rates of return, with a median

2When we restrict the samples to particular rental locations, such as large urban locations, we get fewer number of
observations, but the sample restriction does not have a significant effect on the distributions.
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IRR of 66%. The luxury and RV classes have median IRR’s of 49%. There is more variance in the

distribution of IRRs for the compact class, and the distribution of IRRs for RVs reflects skewness caused

by a few large positive IRRs (of 300% and 900%, respectively). Clearly, rentals have a stochastic (i.e.

unpredictable) component, and certain cars could achieve high rates of return if they happened to be “in

the right place at the right time.” That is, a car that was rented for most of its lifespan would be expected to

have a higher IRR than a car that experienced considerable idle time on the lot. However variations in new

purchase prices, proceeds from sales of the car, and variability in total maintenance costs are also other

obvious stochastic factors that can affect profits and realized rates of return.

Besides the net loss from price depreciation (i.e. the difference between the price of a new car less

its resale value at time of sale), perhaps the most important factor predictive of the profitability of a rental

car is its effective capacity utilization. We define this as the fraction of the car’s service life that it was

rented. In figure 1, the luxury car had the highest capacity utilization rate, having been rented 775 days

out of its 995 day service life, corresponding to a 78% utilization rate. The compact car had a utilization

rate of 74% and the RV had a utilization rate of 42%. It might be expected that a recreational vehicle in a

tourist location would have a lower utilization rate, reflecting idleness in off-peak seasons and weekdays

and non-holiday times.

What accounts for the high rate of return on the RV even though its capacity utilization rate was lower?

The average daily rental rate for the RV was $114, compared to only $34 per day for the compact, and

$81 per day for the luxury car. Also, these rental rates are for short term contracts. The daily rental rate

earned on long term rentals is even lower: $20 per day for the compact and $44 per day for the luxury car.

Thus, it is not only capacity utilization that matters, but also the fraction of time spent in short term rental

contracts. Short term rental contracts are more lucrative in terms of the higher daily rental rates, but their

average duration is much shorter, and there is more idle time associated with these contracts due to the

higher probability a car will be on the lot between successive short term rentals. Also, the higher turnover

rates of short term rentals lead to higher costs of cleaning/maintaining the car after each short term rental

spell in order to make the car ready for the next rental.

Table 0 presents the results of a regression of the internal rate of return on various explanatory vari-

ables to see which factors are most important predictors of high returns on rental vehicles. We report

three regressions for the vehicle types: compact, luxury, and recreational vehicle, pooling over all rental

locations.3 The predicted signs of the coefficients are mostly consistent with intuition: the utilization rate

3The results are basically unchanged if we use the logarithm of the internal rate of return as the dependent variable:

11



should have a positive coefficient for reasons discussed above, maintenance costs and the new purchase

price should have negative coefficients, the sale price should have a positive coefficient, and the daily rental

rates for long and short term rental rates should have positive coefficients.

Compact Luxury RV
All Locations All Locations All Locations

Variable Estimate (t-stat) Estimate (t-stat) Estimate (t-stat)
Constant 0.575 (2.33) −0.006 (−0.02) 0.999 (1.74)
Utilization Rate 0.003 (0.02) 0.522 (4.14) 1.366 (4.52)
Fraction Rented Long Term −0.220 (−2.52) −0.076 (−0.88) −0.876 (−4.79)
Total Maintenance costs ($000) −7.46e−5 (−2.81) −2.00e−5 (−1.64) 6.978e−6 (0.22)
Odometer (000 km) 0.0007 (1.23) −0.0004 (−0.56) −0.001 (−0.79)
Age at Sale (years) 0.151 (3.98) 0.072 (1.54) −0.154 (−1.11)
New Price ($000) −0.104 (−4.98) −0.036 (−4.22) −0.082 (−3.22)
Sale Price ($000) 0.008 (0.37) −0.002 (−0.23) 0.063 (1.68)
Short term rental rate 0.003 (2.83) 0.0006 (2.07) 0.004 (3.84)
Long term rental rate 0.037 (19.09) 0.020 (7.25) 0.009 (1.12)

Observations, R2 167 0.806 40 0.776 31 0.859

Table 0: Regression Results for Dependent Variable IRR

There are three variables for which the signs of the regression coefficients are a priori ambiguous: the

fraction of the rented life in long term contracts, and the age and odometer value on the vehicle at time of

sale. The reason why the first of these is ambiguous has been discussed above: even though daily rental

rates for short term contracts are significantly higher than for long term contracts, the mean duration of

short term rental spells is lower and the likelihood of idle time on the lot between successive short term

rentals is higher. Thus it is not clear a priori whether the firm would prefer its rental cars to spend a larger

fraction of their rented life in short term or long term contracts.

For most the variables where we do have unambiguous expectations about how they affect the IRR, the

results generally confirm our expectations: higher purchase prices reduce the IRR, higher resale increase

it, and the coefficient on the capacity utilization rate is also positive and statistically significant. The signs

on the daily rental rates are also positive and generally statistically significant. The fraction of the time

the car was rented long term has a negative coefficient, suggesting long term contracts are less profitable

than short term contracts on a per day basis, and the utilization rate has a positive estimated coefficent (as

expected) which is significant for the luxury and RV car types, but insignificant for the compact.

the R2 statistics are slightly lower but the same pattern of signs and significance levels for the coefficients emerges for this
alternative specification for the dependent variable in the regression.
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However we are unable to draw any clear conclusions about the effect of age and odometer value on

the IRR: in some cases the coefficients of these variables are positive, and in others negative, and the

coefficient estimates are generally statistically insignificant. The results for the maintenance cost variable

are also ambiguous. There are a number of possible reasons why coefficients of age, odometer, and

maintenance costs have variable signs and are frequently statistically insignificant. One reasons is that

these variables have a high degree of collinearity, especially age and odometer. However when we re-run

the regressions and include only age or odometer individually, the results are still ambiguous, and the

coefficients are generally statistically insignificant. Only in one case, for the luxury vehicle, are both age

and maintenance statistically significant when odometer is omitted from the regression. In this case age

has a positive coefficient and total maintenance cost has a negative coefficient. But even in this case, the

effect of age on IRR is small: the regression results predict that keeping a luxury car for 100 more days

increases the IRR by 0.03.

One potential interpretation of the small and statistically insignificant coefficients on age and odometer

is that it is an indication of optimizing behavior by the firm. That is, if the firm is choosing age and/or

odometer value approximately optimally, we would expect that any variations in these variables about their

optimal values should be small. Let Π(o) denote the expected discounted profits from keeping a car until

it reaches the odometer threshold o before selling it. If the company has chosen the optimal odometer

threshold o∗ at which to sell the car, then at the optimal threshold o∗ we have

∂Π
∂o

(o∗) = 0. (2)

It follows that if the odometer values at which the company sells its cars are approximately eqal to the

optimal threshold o∗, we would not detect any significant effect on discounted profits from small varia-

tions in the realized odometer value about its optimal value o∗ at the time the car is sold. Since IRR is

monotonically related to discounted profits, it follows that if the firm is behaving approximately optimally,

the effect of small deviations in odometer value from o∗ at time of sale on the realized IRR should also be

approximately zero.

However there are a number of reasons why this interpretation may not constitute convincing evidence

of optimal behavior on the part of the company. First, as we will show in the next section, the range of

odometer values at which the company replaces its vehicles is very wide, more than 100,000 kilometers

wide. The argument we made above will only be valid for relatively small deviations of o from its optimal
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value o∗, and a 50,000 kilometer deviation on either side of o∗ seems too large for our argument to apply.4

There is also reason to believe that the coefficient estimates for age and odometer in Table 0 are

untrustworthy because these variables are endogenous. That is, the company’s replacement decisions

clearly determine how old and how high the odometer is on its vehicles before they are replaced. If there

are unobserved factors associated with a car that lead it to be more profitable (i.e. have higher IRR) these

same factors could also lead the company to want to keep the car longer. As a result, one might expect that

age and odometer to be positively correlated with unobserved factors affecting profitability and IRR, and

this correlation can lead to a spurious upward bias in the coefficient estimates for age and odometer value.

As a result, it is difficult to draw any firm conclusions from Table 0 about whether the company is

behaving approximately optimally or not. We would need some sort of instrumental variable to deal with

this endogeneity problem, but there are no obvious candidates for valid instruments in our data set. What

we want would be one or more variables that resulted in exogenous shifts in the age at which the company

replaced some of its vehicles. An example of such a variable might be a recall variable, that is, if there

was some major problem in one of the types of cars that the company owned that leads to a recall to the

manufacturer, or convinces the company to sell these vehicles before it had intended to sell them. In such

case, the “premature” sales of the vehicles could be regarded as a “quasi experiment” that could provide

information on how exogenous reductions in vehicle age or odometer values at time of sale would affect

the IRR. Unfortunately, we are not aware of any recalls or any factors or variables that we could exploit to

use an instrumental variables approach.

Thus, there are are only two other remaining possibilities for how we might go about testing the hy-

pothesis that this company is a profit maximizer. One is to undertake one or more controlled experiments,

that is, to pick one or more car types at one or more of the company’s locations, and randomly assign some

cars to the treatment group, where the “treatment” would correspond to a specific change in the company’s

replacment policy, either replacing cars earlier or later than they do under the status quo, and the remaining

cars of the same car type at the same location would be assigned to the control group and would continue to

be subject to the company’s existing or status quo operating policy. By following the cars in the treatment

and control group for a sufficient length of time (i.e. from their initial purchase until they are sold), we can

compare their profits/returns. If the cars in the treatment group have higher average profits or returns, this

would constitute evidence against the hypothesis that the company’s existing operating policy is optimal

4The argument could also be made that the company is choosing an optimal replacement age a∗, but as we will see,
there is also a wide range of ages over which the company replaces its vehicles. So the same problem would apply if we
hypothesized that the company’s replacement threshold was defined in terms of vehicle age rather than odometer value.
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(i.e. profit maximizing).

The drawback of controlled experiments is that they are costly and time-consuming. Further there

are many possible “treatments” that one could imagine testing: the treatment could involve replacing cars

earlier or later that under the status quo and there could be many possible choices for how much earlier or

later, and whether the appropriate threshold should be based on vehicle age or odometer value. One needs

sufficiently many vehicles in the treatment and control group to make statistically significant inferences,

so the number of possible experiments that the firm could undertake at any point in time is strictly limited.

For these reasons, it appears that an experimental approach to testing whether the company is profit-

maximizing is not very promising.

The only remaining approach (at least of which we are aware) is to construct an econometric model

of the firm’s operations. This model can be simulated to generate predicted outcomes both under the

status quo and under a variety of alternative hypothetical replacement and operating strategies. The key

advantage of the modeling/simulation approach is that the simulations are very cheap, and a large number

of alternative scenarios and operating strategies can be evaluated extremely rapidly. The key limitation

to this approach is that if the econometric model does not provide a good approximation to the actual

operations of this company, its predictions of the effects on the firm’s profits from implementing various

hypothetical alternative operating strategies will not be trustworthy.

We will adopt the modeling/simulation approach in this paper. In the next section we present our

econometric model of the company’s operations, and in the section after that we simulate the model and

show that it provides a good approximation to the actual outcomes for this company under its status quo

operating strategy. Thus, we argue that the modeling/simulation approach is trustworthy, although we

still recommend that the predictions of the model be validated by conducting a controlled experiment to

evaluate whether the optimal replacement strategy implied by this model really does lead to the significant

increase in profits that the model predicts.

3 An Econometric Model of the Rental Car Company

In order to get more insights into the behavior of the rental company and to evaluate the profitability of

its vehicle replacement decisions, this section describes an econometric model of the company’s vehicle

rental operations. We introduce a semi-Markov model in which cars that the company owns can be in one

of four possible states at any given time:
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1. In a long term rental contract (i.e. a “long term rental spell”),

2. In a short term rental contract (i.e. a “short term rental spell”),

3. In the lot waiting to be rented, where the previous rental state was a long term rental spell,

4. In the lot waiting to be rented, where the previous rental state was a short term rental spell.

We refer to the latter two states, 3 and 4, as lot spells. We differentiate between these states since it turns

out empirically that the duration distribution of a car in a lot spell is quite different depending upon whether

it had previously been in a long or short term rental contract.

A semi-Markov process is a stochastic process that can be in one of a finite number of possible states

at any given time, but where the duration distributions in each of these states (also called the holding time

distributions) can be arbitrary distributions. A Markov process is a special case of a semi-Markov process

where the duration distributions in each state are restricted to be exponential (or geometric, in the case of

discrete time models). In this case, we formulate the problem in discrete time, with the relevant time unit

being a day. We let rt denote the rental state of a given car on day t. From the discussion above, rt can

assume one of the four possible values {1,2,3,4}.5

In addition to the rental state, other relevant state variables for modeling the decisions of the rental

company are the vehicle’s odometer value, which we denote by ot , and the duration in the current rental

state, which we denote by dt . Thus, we seek to model the joint stochastic process {rt ,ot ,dt}. There is

another potential state variable of interest, the vehicles age which we denote by at . If we let t = 0 denote

the date at which a car was bought, and if a0 = 0 (when a car is acquired, it is a brand new car), then we

have at = t, i.e. the age of the car in days is the same as the time index t.

In our empirical analysis below, it turns out that a vehicle’s age t is strongly correlated its odometer

value ot . Because of this “collinearity problem” it is difficult to identify the independent effects of these

two variables on decisions to sell a car, or on maintenance costs, state transition probabilities, durations

in states, and even on the resale price of used vehicles. Since there are numerical and computational

advantages to minimizing the number of different variables we try to model, and since excluding the age

variable results in a significant reduction in the dimensionality of the problem, we have opted to exclude

5Actually we could distiguish a fifth possible state, rt = 5, denoting a brand new car that is in its first lot spell. Empirically
we have found that the duration distributions for the initial lot spell can be well approximated as a mixture of the duration
distributions for lot spells rt = 3 and rt = 4, and so to reduce the size of the state space, we use only four possible values
for rt and probabilistically assign new cars to lot states 3 and 4 in such a way that the initial duration distribution closely
matches the distribution of initial lot spells that we observe in the data.
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vehicle age from the list of variables that we use to predict the company’s selling decision, vehicle resale

prices, transitions and durations in spells, and so forth. However as we will see shortly, the model we

construct does in fact keep track of vehicle age, and simulations of our model are able to accurately

predict the distribution of ages at which the company sells vehicles, even though we restrict the company’s

decision rule about selling a vehicle to be a function of the vehicle’s odometer ot and not its age at .

Using the three key variables {rt ,ot ,dt} we will also be able to simulate realized variables of rental

revenues and also maintenance costs using the data that the company provided us. With this information,

we can construct a complete econometric model of the company’s rental operations, and conduct stochastic

simulations of the model to see how accurately it can represent the company’s actual operations. The

econometric model requires us to specify and estimate the following key components

1. A model of the resale price the company receives if it were to sell one of its cars,

2. A model of the random durations of a car in each of the rental and lot states,

3. A model of a car’s transition to the next rental spell at the end of the current rental or lot spell,

4. A model of the utilization (kilometers driven) on a particular car during a long or short term rental

contract,

5. A model of rental revenues received and maintenance costs incurred by the company over the life of

the car,

6. A model of the company’s selling decision, i.e. the factors that motivate it to sell a given car at a

particular point in time.

We will now discuss each of these components in turn, describing the econometric model we chose and

the result from estimating it. The first model is a model of a car’s resale price. We have data on both

the new price P(τ) as well as the realized sales price Pt(ot ,τ) of each car, where τ denotes a particular

make and model of vehicle, which we will also call a car type. Our econometric analysis will focus on

three particular car types: 1) a compact, 2) a luxury, and 3) an RV. We wish to emphasize that in order

to maintain confidentiality of the data, we are not able to disclose the specific brand and model of these

three car types, and instead use the rather vague car type designations to refer to them. But we wish to

emphasize that whenever we refer to one of these car types, such as “compact”, we are not referring to

the class of all compact cars owned by this company, but instead to a specific brand and model.
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For each of the three car types τ, we estimated a simple linear regression model with the logarithm of

the depreciation rate, P(τ)/Pt(ot ,τ), as the dependent variable

log(P(τ)/Pt(ot ,τ)) = α1(τ)+α2(τ)ot + εt . (3)

The results from this model be interpreted as a regression with cartype-specific “depreciation coefficients”

(α1(τ),α2(τ)) where α2 measures the effect of odometer on the selling price of the vehicle. We also esti-

mated regressions where we included the vehicle age and other variables, such as the number of accidents

and the total accident repair cost as predictors of the resale price of a car. These results are presented in

table 2 below.

Compact Luxury RV
All Locations All Locations All Locations

Variable Estimate (t-stat) Estimate (t-stat) Estimate (t-stat)
Constant −0.4789 (−7.61) −0.6201 (−20.85) −0.8521 (−4.04)
Age (days) −0.0001 (−2.53) −0.0004 (−5.67) −0.0004 (−2.17)
Odometer (000 km) −0.0007 (−2.11) −0.0011 (−2.10) 0.0016 (1.91)
Number of Accidents −0.0112 (−1.05) 0.0006 (0.04) 0.0371 (1.00)
Accident Repair Costs −0.8.88e−6 (−1.04) −4.672e−6 (−0.57) −1.654e−6 (−0.56)
Internal Rate of Return 0.1629 (12.21) 0.067 (0.99) 0.394 (4.43)
Maintenance Cost per Day 0.0092 (0.64) −0.0039 (−0.31) −0.0053 (−0.33)

N, R2 288 0.389 91 0.420 41 0.481

Table 1: Regression Results for Dependent Variable log(P(τ)/Pt(ot ,τ))

The regression results show that both age and odometer value are significant predictors of the resale

price of used cars, however the incremental predictive power of adding age in addition to odometer value

is not huge. Thus, for the case of the compact car, the R2 statistic (which measures the fraction of the

variance in used car prices explained by the regression) drops only slightly, from 38.9% to 37.5%, when

the age regressor is removed, and for the RV, the R2 drops from 42% to 41%. Nevertheless, we cannot

reject the hypothesis that age is a significant predictor of used car prices, as we can see from the size of

t-ratios of the age coefficient for all three vehicle types (where a value of plus or minus 1.96 corresponds to

an approximate 5% significance level). In terms of the “economic significance” of the relative magnitudes

of price depreciation predicted by the estimated age and odometer coefficients, note that for the compact

car, the average number of kilometers travelled per day (including accounting for “dead time” on the lot)

was 77. Thus, after 100 days, the compact would be predicted to have an odometer values that was about

7700 kilometers higher. From the results in table 1, we see that the regression model predicts the price
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depreciation from the extra kilometers would be −1/2%, whereas in terms of the predicted effect of age

along, the extra 100 days would be predicted to lower the car’s value by −1%. Thus, in some sense the

effect of age on price seems to be about twice as large as the effect of odometer, ceteris paribus. Of course,

both age and odometer tend to increase together, and so the combined effect of an additional 100 days and

7700 kilometers is roughly the sum of the age and odometer coefficients, or roughly a −1.5% depreciation

in the value of the vehicle.

The constant term in the regressions is a measure of how much depreciation a vehicle experiences the

“minute it goes off of the new car lot.” We see that this predicted “instantaneous depreciation” is huge

for all three vehicle types, but is significantly lower for the compact (62% = exp(−.48)), than for the

luxury vehicle (52%) or the the RV (43%). Figure 3 provides scatter plots of the resale prices for the

three cars, graphed against the vehicle’s odometer value at time of sale. The rapid early depreciation in

the car prices is evident in these graphs. While a number of cars are sold quite “early” after their initial

purchase (measured either in terms of their age or odometer value), we do not have any observations of

sale prices the company might have received if it were to have sold vehicles in only a matter of a few weeks

or months after the initial purchase. For the purposes of our modeling, we did not feel we could trust the

regression extrapolations for used vehicle prices for age or odometer values very close to zero. Therefore

we made a simple, but ad hoc extrapolation of what we think a very new used car (i.e. one with less

than 20,000 kilometers) would sell for, instead of using the estimated regression intercepts, which we feel

would greatly underestimate the resale value of a very new used car. We assumed that the “instantaneous

depreciation” for a brand new car would be only 10% and then used a straightline interpolation from this

value to the resale values implied by our regressions at an odometer value of 20,000 kilometers. As we

can see, even at this relatively low odometer level we do have actual observations of sales and we see that

the regression does accurately predict the mean resale price over the range of our data.

In our subsequent analysis we will show that our predictions of the optimal replacement policy are

not sensitive to our assumptions about the precise shape of the depreciation curve for cars with odometer

values of less than 20,000 kilometers. The simple reason for this is that under none of the scenarios that

we analyzed would it ever be profitable for the company to sell its cars before 20,000 kilometers. Thus,

whether the initial early depreciation in a car’s value happens “instantaneously” (i.e. dropping from 100%

to between 62% to 43% of its value the second it drives off the lot) or slightly more gradually as our linear

interpolations in figure 3 suggest, is really immaterial from the standpoint of the company. This very

rapid early depreciation in vehicle is evidently a cost that the company must deal with, and its method for
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Figure 3 Predicted versus Actual Resale Prices: Compact, Luxury, and RV – All Locations
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“recouping” these depreciation costs is to hold a vehicle long enough so that the rental revenue it earns far

outweighs the loss the company incurs from the depreciation in resale value.

The regressions show that accidents, measured either by the number of accidents or the total cost of

repairing the accidents, does not have a significant derogatory effect on the resale value of the vehicle. This

is likely because of the impact of insurance, which is supposed to result in repairs following an accident

that restores the vehicle to its pre-accident condition. For this reason, it is perhaps not surprising that the

accident variables are insignificant.

It is perhaps more surprising that average daily maintenance cost of the vehicle over its lifetime is not

a significant predictor of the resale value of a vehicle. To our knowledge, while the company is required

to disclose the number of accidents that a vehicle had at the time of sale, it is not required to disclose the

total maintenance costs. Thus, a potential purchaser may not have the information that a certain vehicle

was a “lemon” and encountered very high maintenance costs, except to the extent that the buyer is able to

take the car to a mechanic and have it inspected prior to purchase. In any event, high maintenance costs do

not seem to have any significant effect on the resale price of a vehicle.

A final variable, the vehicle’s internal rate of return (IRR) over its lifetime, is a significant predictor

of resale values, at least for the compact and RV. One interpretation is that a vehicle with a high IRR

represents a “good car” that is attractive and was frequently rented by customers (thus resulting in the high

IRR). However the interpretation of this coefficient is problematic due to potential endogeneity of IRR.

As noted in table 0, a car with a higher resale value will have a higher IRR, all other things equal. Thus,

unobservable characteristics of a car that lead it to have a higher resale value could also lead it to have a

higher IRR, and thus the positive coefficient on IRR could be partly spurious, due to a positive correlation

between IRR and unobservable factors affecting a vehicle’s resale value.

Overall, the main conclusion we draw from table 1 is that beyond age and odometer value (and im-

plicitly the car’s characteristics, as represented by its make and model), there are few other significant

explanatory variables for the resale value of a car. Our regressions can explain only between 40 to 50%

of the variation in the resale values of the cars the company sells: there is a lot of “residual variance” that

leads one car to sell for much more than another car that from our standpoint is “observationally equiv-

alent” to it, at least in terms of the variables we can observe. To the extent that this residual variation in

used sales prices really is “random” and cannot be accounted for by unobserved idiosyncratic characteris-

tics that the buyers can see but which we do not have in our dataset, there may be other room for this firm

to increase its profits by adopting a “reservation price strategy” when it sells its cars. That is, instead of
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putting a car up for sale (in some cases in an auction), and selling the car no matter what, even if the best

offer for it is very low, if the firm adopts a reservation price strategy it would refuse to sell the car on a

particular occasion if the best offer price was not sufficiently high. Instead, it would try to resell the car

at a subsequent date, perhaps in a different venue. In the analysis below, we do not assume that there is

anything suboptimal about the selling strategy that this firm uses. We assume that the large variation in

resale prices is justified based on unobservable characteristics of the cars they are selling that we cannot

observe (e.g. scratches or dents, stains or rips in the upholstery, etc.) that account for the large variation

in resale prices among “observationally equivalent” vehicles that we observe. Later in section 6 we will

consider how our conclusions would be altered if we adopt the alternative hypothesis that a good deal of

the variation in resale prices is not justified, and represents some sort of inefficiency or variability in bids

for cars up for sale, that could signal inability of the firm to achieve the “fair market value” for some of the

cars it sells.

Now we consider the econometric estimation of patterns of usage of vehicles during rental spells. As

we noted above, the firm does not impose a maximum number of kilometers that can be driven during a

rental contract or any per kilometer usage rate, and so rental customers are entirely free in their choice

of how much to drive their rental cars during a contract. The level of utilization by rental customers is

obviously a key part of the “law of motion” because it determines how quickly a car will “age” in terms

of the car’s odometer value, which we demonstrated above is a key predictor of the resale value of the car.

However there is a difficulty, noted above, is that the firm frequently does not accurately record the in and

out odometer values for its vehicles, making it impossible for us to determine how far a car was driven on

particular rental spells. To get around this problem and make inferences about the conditional probability

distribution of the number of kilometers driven of a rental contract of type r ∈ 1,2 and duration d, we let

F(o′|o,d,r) denote the conditional distribution of the (frequently unobserved) odometer value on a rental

car that has returned from a rental contract of type r, lasting d days, when the out odometer value was o

(i.e. the car had an odometer reading of o at the start of the rental spell). Thus, ∇o = o ′−o is the number

of kilometers driven by the customer during the rental spell. We assume that the number of kilometers

travelled each day by a rental customer are IID draws from an exponential distribution with parameter

λr. Conditional on spell length d, it follows that F(o′|d,r) is a gamma distribution, since a sum of IID

exponential random variables has a gamma distribution.6 The probability density function corresponding

6Actually, the distribution is part of a special subclass of the Gamma family known in renewal theory as the Erlang
distribution since the parameter α of the Gamma distribution is an integer α = d.
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to F is given by

f (o′|o,d,r) =

{

[o′−o]d−1 exp{−(o′−o)/λr}
[λr ]dΓ(d,λr)

if o′−o ≥ 0

0 otherwise
(4)

where Γ(d) is the Gamma function. Thus, o′ − o is the actual number of kilometers travelled by the

customer during the rental contract. We have E{o′− o|o,d,r} = dλr, so we can interpret λr as the mean

number of kilometers travelled per day in a rental contract of type r. For notational consistency, we set

λr = 0 if r > 2, i.e. cars do not travel any kilometers when they are on the lot waiting to be rented.

In order to estimate kilometers travelled per day under short term and long term contracts, it would be

natural to look to the rental contract data directly and take the average kilometers travelled per day for short

term and long term contracts separately. However since the odometer values in and out of rental contracts

do not appear to be accurately recorded in the company’s data, we cannot use this approach. Indeed, if

we had such data, it might even be possible for us to estimate the conditional distributions F(o ′|o,d,r)

non-parameterically or semi-parametrically, and thus, not have to rely on the parametric assumption that

kilometers travelled per each day of a rental contract are IID exponential variables. However we can

estimate the two λr parameters necessary for us to determine the distributions F(o′|o,d,r) since we do

have accurate records on the odometer value of each vehicle at time of sale. Suppose that at time of sale, a

rental car had been rented for N s days under short term rental contracts and N l days under long term rental

contracts. Then the odometer value on the car at time of sale is given by

õ =
Nl

∑
i=1

∇ol
i +

Ns

∑
i=1

∇os
i (5)

where ∇ol
i and ∇os

i are the realized number of kilometers travelled under long and short term contracts,

respectively. Under our assumptions that kilometers travelled per day are exponential random variables

with parameters λ1 (for long term contracts) and λ2 (for short term contracts), we have

E{õ|N l,Ns} = λ1N l +λ2Ns. (6)

Since we do accurately observe the number of days a vehicle is rented, this implies that we can estimate

λ1 and λ2 as coefficients on a simple linear regression

oi = λ1N l
i +λ2Ns

i + εi (7)

where oi is the odometer at time of sale on the ith rental car sold by the company, and N s
i and N l

i are the

number of days the ith car had been in short and long term rentals over its service life.
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Using these regression estimates and the information on (N l
t ,N

s
t ) for each car, now indexed by the day

in its service life, t, we can compute a predicted value for the car’s odometer, ôt = λ̂1N l
t + λ̂2Ns

t , at day t

in the car’s life. The high R2 values for the odometer regressions in equation (7) give us confidence that

our predicted odometer values are reasonably accurate. Using these predicted odometer, our next step is

to analysis the determinants of the company’s decision to sell its cars.

Variable Compact Luxury RV
All Locations All Locations All Locations

λ1 78.7 86.6 95.4
λ2 157.1 140.8 167.7

Table 2: OLS Estimates of λ1 and λ2

Table 3 presents the results of a binary logit model of the company’s selling decision for the three car

types, compact, luxury, and RV. We tabulated data for each day a car was in a lot spell and treated the

company as having the opportunity to either keep the car or sell it on that day. Thus, if we let st denote a

binary variable for the selling decision with st = 1 if the company sells the car and st = 0 if the company

keeps the car, we estimated the parameters θ as coefficients of variables xt that represent different factors

that might affect the company’s decision to sell the car, using the standard logistic functional form

Pr{st = 1|xt} =
exp{xt θ}

1+ exp{xt θ}
. (8)

Among the variables in the vector xt are the vehicle’s age and predicted odometer value (based on the

regression estimate ôt using the observed values of N l
t and Ns

t from the rental contract data, as discussed

above), the duration in the lot, the average daily maintenance costs for the vehicle at day t (the ratio of

the total maintenance costs incurred up to date t divided by t), and the vehicle’s utilization rate (the total

number of days the vehicle was rented up to t divided by t).

The empirical results here are somewhat mixed. As we previously discussed, due to the collinearity

between age and odometer value, it is difficult to identify the separate effects of age versus odometer

value on the firm’s decision to sell a vehicle. For the compact and RV, the age variable is the statistically

significant predictor and odometer value is statistically insignificant. However for the luxury car, the

opposite result holds: odometer is the statistically significant predictor and age is insignificant. The overall

goodness of fit of the models does not change significantly if we use only age or only odometer values to

predict the company’s selling decision.

24



Compact Luxury RV
All Locations All Locations All Locations

Variable Estimate (t-stat) Estimate (t-stat) Estimate (t-stat)
Constant −13.061 (−22.34) −12.271 (−5.41) −14.669 (−8.39)
Age (days) 0.0077 (7.34) 0.0011 (0.43) 0.0125 (5.82)
Odometer (km) 0.0050 (0.44) 0.0987 (3.37) −0.038 (−1.91)
Duration, Age < 500 0.0206 (12.31) −11.994 (−19.23) −6.069 (−49.78)
Duration, Age ∈ [500,1000) 0.0867 (24.37) 0.0471 (8.85) 0.0399 (7.72)
Duration, Age > 1000 0.1362 (13.23) 0.1736 (2.85) 0.1744 (6.49)
Maintenance Cost 0.00003 (2.14) 0.2030 (0.85) −0.0188 (−0.23)
Utilization Rate 0.4049 (0.61) −1.616 (−0.57) 1.989 (0.84)

N, log(L)/N 36262 −0.017 6445 −0.022 7192 −0.017

Table 3: Logit Estimation Results for Decision to Sell Car

Besides age and odometer, the only variable whose coefficient estimates are statistically significant

and has signs that are (generally) consistent with our a priori expectations is the duration variable. For

young cars (less than 500 days old), duration has a negative coefficient for the luxury and RV cars, and a

positive coefficient for the compact. For cars that are less than 500 days old, there is very little chance that

they will be sold, and so the duration variable is mainly acting as a “dummy variable” and the negative

values are the model’s way of telling us that the chance of being sold is close to zero. However when the

car is between 500 and 1000 days old, all three duration coefficients are positive and are uniformly higher

than in the case for cars less than 500 days old. Finally for older cars, i.e. those whose age is greater than

1000 days, the duration coefficients are the highest. This tells us that the cars that are at the greatest risk of

being sold are the older cars that have been on the lot unrented for many days. Besides this strong duration

effect, neither maintenance costs nor utilization rates (or any other variables we considered in estimations

that we have not reported due to space constraints) appear to have any strong and consistent effect on the

company’s decision to sell their vehicles.

Figure 4 summarizes the main factors governing the replacement decisions by this firm for each of the

three vehicles. The left hand column of figure 4 plots the cumulative distribution function for replacements

as a function of the odometer value, and the right hand column plots the cumulative distribution function in

terms of the vehicle age. The right hand column confirms the company’s claim that its targeted replacement

age for its vehicles is 3 years. The mean age of the three types of cars at replacement is fairly close to

this three year target: 2.8, 2.9 and 2.7 years for the compact, luxury and RV, respectively. However the

left hand column shows that in terms of odometer values at replacement, there is greater variability. The

25



mean odometer value at replacement for the three vehicle types is 78, 75 and 89 thousand kilometers,

respectively. The fact that mean replacement ages vary much less across the three car types than the

mean odometer values at replacement may be taken as evidence that the company bases its replacement

decision more on the “3 year rule” than on a rule based on number of kilometers driven. However an

alternative hypothesis is that the company makes replacement decisions on an odometer threshold, but that

it has different “optimal” thresholds for different types of vehicles. We will see that while it is hard to

empirically distinguish which of these two hypotheses is the “correct” it is not really necessary to make

such a distinction for our purposes. Due to the high degree of collinearity between age and odometer

values, a replacement rule based on odometer value can provide a good approximation to an age-based

replacement rule and vice versa.

We do note that the firm is clearly not following an exact age or odometer threshold replacement rule.

That is, the firm does not replace all of its cars at the moment they exceed three years of age, or the instant

their odometer values exceed some specified cutoff value. Instead, we see a fairly wide range of ages and

odometer values over which cars are sold. The oldest ages at which cars are sold occurs at 4, 4.9 and 3.8

years, repectively for the three types of vehicles, where the earliest ages at which vehicles are sold is at 1.5,

1.9 and 1.9 years respectively. Thus, replacements occur over 2 to 3 year interval starting around 2 years of

age, by 2.8 years 50% of the cars have been replaced, and after 5 years of service all of the cars have been

sold off. In terms of odometer values, the range is even larger: one compact car was sold with only 10,000

kilometers on its odometer. The highest odometer at which we observed any of these cars being sold was

a luxury vehicle that was sold at 187,000 kilometers. The relatively small numbers of relatively “old” cars

that the firm sells lead to distributions of ages and kilometers at sale that are skewed to the right. Similar

to predicting resale prices, we conclude there are a number of unobservable factors that lead to relatively

wide variation in odometer values and ages at which different cars are sold. Besides age and odometer

value (and secondarily duration in the lot, when cars are sufficiently old), we have not found any other

variables in our database that are capable of predicting why certain cars are sold when they are relatively

young and others are sold when they are relatively old.

The remaining objects to be estimated to implement our econometric model are the spell durations

and the spell transition probabilities. As is well known, there is a duality between duration distributions

and the corresponding hazard functions. We choose to work with hazard functions and let h(d,r) denote

the hazard rate for the rental state r, i.e. it is the conditional probability that the car that has been in

rental state r for d days will exit the state d on the next day, d + 1. Thus with probability 1− h(d,r) it
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Figure 4 Cumulative Fractions of Cars Replaced: Compact, Luxury, and RV – All Locations
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will continue to remain in state r. The following well known recursion formula allows us to compute the

duration distribtion f (d|r) implied by the hazard function h(d,r)

f (d|r) =

{

f (1|r) = h(0,r)
f (d|r) = ∏d−2

j=0 [1−h( j,r)]h(d −1,r) d ≥ 2
(9)

Since we have sufficiently many observations of rental spells, we were able to estimate the hazard functions

for these spells non-parametrically. The longest duration for any rental spell is 31 days, i.e. the maximum

duration of a monthly rental. As one might expect, the duration distributions of long and short term rental

spells are very different: most short term rentals last only a few days whereas most long term rentals last

for an entire month. There is only minor variation in the durations of long term rentals, i.e. some rentals

are for 29 days, 30, or 31 days. Very few long term rentals last fewer than 15 days, perhaps in part due to

the 20% penalty the company imposes on early return of vehicles in a long term contract. Figure 5 presents

the duration distributions implied by our estimated hazard rates.

We have far fewer observations on lot spell durations, especially for type 3 lot spells (i.e. where the

previous rental spell was a long term contract). This is due to the high probability of roll overs in longer

term contracts, leading to relatively few observations on intervening lot spells with positive durations. Due

to the relatively small number of observations, our nonparametrically estimated hazard functions are quite

jagged. Also, unlike rental contracts, there is no a priori upper bound on the duration of a lot spell. As

a result we needed some method of extrapolation to predict durations given that we have only a small

number of cases with extremely long lot durations.

Our solution to this problem was to assume that the hazard function is constant after d = 31 days,

which implies a geometric upper tail for the distribution of lot spells. We estimated this constant upper tail

hazard rate tail by imposing the constraint that the implied duration distribution (with a smoothed, non-

parametrically estimated lower tail and the geometric upper tail) has a mean duration that equals the actual

mean duration for type 3 or 4 lot spell. Figure 5 shows the rental duration distributions (left panel) and the

lot spell hazard functions (right panel). The duration distributions and lot hazard functions for the other

two car types are similar, and are omitted due to space constraints. Note that none of our estimated hazard

rates for the various spell durations depend on the vehicle’s odometer. We have omitted the odometer

variable since there is no evidence for any “aging effect” in the durations for any of the 4 possible spell

types. To convince the reader, figure 6 presents scatterplots of the durations for all spells for all of the

compact cars in the data set.
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The x-axis in these scatterplots is the predicted odometer value. The results would be essentially

unchanged if we had used the age of the vehicle in days (for which no regression predictions are necessary

since in and out dates for rental spells are accurately recorded in the database). We see that there is no

trend in spell durations as vehicles age, thus justifying our decision not to include the vehicle’s odometer

value as a covariate in the estimated hazard rates, h(d,r).

When a spell in a given rental state ends, there is a transition to a new rental state. Let π(r ′|r,d,o)

denote probability the new rental state for a car will be r ′ given that the current rental state is r, the

odometer value is o, and the duration in state r is d. We call π the rental state transition probability.

If r > 2, i.e. the car is in a lot spell, we rule out “self transitions”, i.e. π(r|r,d,o) = 0 for r > 2. This

is because the hazard function h(d,r) already provides the probability that the lot spell has ended, and

there is no conceptual difference between a lot spell continuing for one more day, versus the case where

a lot spell terminates and immediately re-enters the lot via a self-transition r ′ = r. Thus the restriction

π(r|r,d,o) = 0 for r > 2 can be viewed as an econometric “identification normalization.”

However for rental spells, there is a conceptual distinction between a rental spell that terminates with

an immediate transition to a new rental spell versus the case where an existing rental contract continues

for one more day. The former case can be viewed as an immediate “roll over” of one rental contract to

another one, perhaps the previous customer renewing or extending their previous rental contract by one

more month (in the case of a long term contract), or by another day (in the case of a short term contract).

Thus, we allow π(r|r,d,o) > 0 for r ∈ {1,2}, and interpret this probability as a probability of a contract

extension or roll over.

The rental spell transition probability can also accommodate transitions from a rental spell to a lot

spell, except that by our definition of the two types of lot spells, it must be the case that π(4|1,o,d) = 0

and π(3|2,o,d) = 0, i.e. if a car is leaving a long term rental spell, it can only transition into a lot spell

of type 3 (which is defined as a lot spell where the previous rental spell was a long term contract), and

similarly, a car leaving a short term rental spell can only transition into a lot spell of type 4. The reason

why we distinguish the two types of lot spells is evident from the right hand panel of figure 5: the hazard

functions and mean durations for type 3 lot spells are different than for type 4 lot spells. In particular, for

all three types of cars, hazard rates for type 3 lot spells are lower and thus mean durations are higher. In

plain language, if a car had previously been in a long term rental and the contract did not immediately roll

over, one can expect the car to be on the lot for a longer period of time compared to the case where the car

has returned to the lot from a previous short term rental.
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Since there are three possible destination states for transitions out of rental spells (i.e. 1) long term con-

tract, 2) short term contract, or 3) lot spell), we used a trinomial logit model to estimate these probabilities.

This probability is given by

π(r′|r,d,o) =
exp{v(r,d,o)θr′}

∑ρ∈{1,2,l(r)} exp{v(r,d,o)θρ}
, (10)

where v(r,d,o) is a vector-valued function of the variables (r,d,o) and θρ is an alternative-specific vector

of parameters, for ρ = {1,2, l(r)} (where l(r) denotes a lot spell, either of type 3 if r = 1 or type 4 if

r = 2) with the same dimension as v. As is well known, it is not possible to identify all three of the θρ

vectors. Therefore we make an identifying normalization that θ1 = 0, i.e. we normalized the parameters

for transition to long term contract to zero. Table 4 presents the results of the trinomial logit estimation for

the three car types.

Compact Luxury RV
All Locations All Locations All Locations

Variable Estimate (t-stat) Estimate (t-stat) Estimate (t-stat)
θ2: coefficients for transition to short term rental

Constant 4.602 (27.45) 3.012 (11.01) 4.137 (10.68)
Odometer, o (000 km) 0.0113 (4.24) 0.002 (0.69) 0.001 (0.27)
Duration, d −0.068 (−6.29) −0.039 (−2.92) −0.087 (−3.86)
I{d >= 29} −0.421 (−1.52) 0.006 (0.02) 0.079 (1.27)
I{r = 1} −6.653 (−31.20) −6.289 (−20.72) −6.326 (−13.77)

θl(r): coefficients for transition to lot spell of type l(r), where l(1) = 2 and l(2) = 4
Constant 3.879 (23.17) 3.696 (14.29) 4.359 (11.38)
Odometer, o (000 km) 0.0204 (7.67) 0.007 (2.52) 0.010 (2.25)
Duration, d −0.077 (−7.81) −0.082 (−7.95) −0.120 (−6.31)
I{d >= 29} −1.504 (−6.79) −1.076 (−4.91) −0.775 (−1.76)
I{r = 1} −4.491 (−25.32) −3.442 (−16.43) −3.775 (−11.75)

N, log(L)/N 16246 −0.606 3617 −0.484 2142 −0.583

Table 3: Trinomial Logit Estimates of Transitions out of Rental Spells

For transitions out of lot spells, since we have ruled out the possibility of “self-transitions” there are

only two possible destinations: long term rental spells and short term rental spells. Table 4 presents binary

logit estimation results for transitions from lot spells of type 3 and 4 (i.e. where the previous rental spell

was a long term contract and short term contract, respectively), i.e. for transition probabilities specified as

π(r′ = 1|r,d,o) =
exp{v(o,d)θr}

1+ exp{v(o,d)θr}
, r ∈ {3,4} (11)
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Compact Luxury RV
All Locations All Locations All Locations

Variable Estimate (t-stat) Estimate (t-stat) Estimate (t-stat)
θ3 coefficients for transitions from type 3 lot spells

Constant 2.262 (3.94) 1.590 (3.53) 2.335 (2.09)
Odometer, o (000 km) 0.010 (0.83) −0.002 (−0.23) −0.009 (−0.59)
Duration, d −0.053 (−2.39) −0.004 (−0.45) −0.038 (−1.05)

N, log(L)/N 173 −0.326 181 −0.490 43 −0.511
θ4: coefficients for transitions from type 4 lot spells

Constant 3.634 (16.86) 1.935 (8.97) 4.536 (9.67)
Odometer, o (000 km) 0.0211 (3.74) 0.013 (2.51) −0.009 (−1.12)
Duration, d −0.064 (−4.46) −0.003 (−1.10) −0.026 (−2.28)

N, log(L)/N 5162 −0.077 961 −0.683 922 −0.090

Table 4: Binomial Logit Estimates of Transitions out of Lot Spells

There are two key points to take away from tables 3 and 4: 1) for all car types, there is a very high

probability that cars will be initially rented in long term contracts, 2) the results provide clear evidence

of “contract age effects”. That is, as the odometer value increases (i.e. the age of the car increases) the

probability of transitions into long term rental contracts decreases and the probability of transitions into

short term rental contracts increases.

Figure 7 illustrates these age effects, i.e. it plots π(r ′|r,d,o) as a function of o for fixed (r,d). The

two top panels plot the three possible probabilities in a transition from the 31st day of a rental spell (i.e.

d = 31) for r = 1 (previous spell was a long term rental, top left panel of figure 7) and for r = 2 (previous

spell was a short term rental, top right panel of figure 7). We see that for new cars, there is a very high

probability of a transition into a long term rental contract, but as the car ages, this probability falls. The

bottom two panels of figure 7 show the estimated transition probabilites into a long term rental contract

from a lot spell of type 3 (bottom left panel of figure 7) and from a lot spell of type 4 (bottom right panel

of figure 7).

The bottom panels of figure 7 plot three probability curves, for durations of d = 1, d = 10 and d = 30

in the lot spell. We see a strong duration effect (i.e. probability of transition into a long term rental spell

increases with duration in the lot spell), and strong aging effects (i.e. the probability of transition into a

long term rental spell, for any duration, decreases with the odometer value of the car). Overall, the age

effects shown in figure 7 constitute the “rental contract composition age effect” that we discussed in the

introduction. Simply put, as the car ages, whenever it is rented, the more likely it is that the rental will be a

short term contract. Further, the likelihood of being in a lot spell also increases with the age of the vehicle.
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Figure 7 Estimated Transition Probabilities as a Function of Odometer Value: Compact – All Locations

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Distribution of Daily Maintenance Cost: Compact, all locations

D
en

si
ty

Daily Maintenance Cost: Compact, all locations

Mean   0.61955
Median 0.47185
Minimum 0.043106
Maximum 3.0261
Std dev 0.52288
Observations 167

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

Distribution of Daily Maintenance Cost: Luxury 2, all locations

D
en

si
ty

Daily Maintenance Cost: Luxury 2, all locations

Mean   0.98641
Median 0.72742
Minimum 0.19286
Maximum 6.8778
Std dev 1.0527
Observations 40

Figure 8 Distribution of Daily Maintenance Costs: Compact and Luxury – All Locations

33



The final objects necessary to complete our econometric model are the daily rental rates and main-

tenance costs. The estimation of daily rental rates is trivial: in fact since the rates are fixed, we can use

the company’s published tariff rate. However there is some minor variation in daily rental rates due to

variations in optional equipment and features on cars (e.g. some cars have larger engines that the standard

size, etc.). To account for this variation, we simply computed the mean daily rental rate by dividing the

total rental revenues earned in long and short term rental spells but the number of days in these spells.

Maintenance costs are incurred on a episodic basis. The company appears to adhere to a fairly regular

periodic maintenance schedule with operations such as oil changes, brake pad replacement and so forth

occuring at regular intervals (either intervals of time such as every 3 months, or in terms of odometer

values, such as every 50,000 kilometers, etc). However there is also evidence of a high frequency of

“unexpected maintenance” resulting from random malfunctions or problems in particular cars. While we

could have tried to model the durations between successive maintenance events, and then conditional on

an event occurring model the distribution of maintenance costs occurred on each maintenance occasion,

we opted for a simpler approach that appears to work just as well. Our approach is simply to charge a

daily equivalent maintenance rate, where we estimate the daily maintenance charge by taking the mean of

the ratios of total maintenance costs over the service life of the vehicle divided by the age of the vehicle at

the time it was sold.

Figure 8 plots the distribution of daily maintenance costs for the compact and luxury car types, respec-

tively (the distribution of maintenance costs for RVs is similar and not shown due to space constraints). We

see that there is evidence of some car-specific heterogeneity in total maintenance costs, with evidence that

a minority of cars are “outliers” or “lemons” in the sense that their daily maintenance costs are 5 to 6 times

higher than the average. However it appears that high maintenance costs are a relatively “second order”

consideration for this company in terms of vehicle replacement decisions. Recall that daily maintenance

costs did not emerge as a significant predictor of either used car prices, or of the company’s decision to

replace a car. As a result, we did not feel that the payoff from a more detailed model of the timing of

maintenance would be very high. Although charging an average daily maintenance costs is a less accurate

way of modeling the actual incidence of cash flows, since maintenance costs are small relative to rental

revenues, the discounted value of profits and other measures such as the internal rate of return on the ve-

hicle are not sensitive to the timing assumptions. Indeed, in the next section we will now show, via the

stochastic simulations, that our simplified treatment of maintenance costs does not compromise our ability

to provide a good overall model of the firm’s operations.
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Figure 9 Scatterplot of Average Daily Maintenance Costs in Previous 30 Days: Compact – All Locations

The final issue we address is whether there is evidence of aging effects in vehicle maintenance costs.

Figure 9 presents a scatter plot of the average daily maintenance costs incurred by the company on its

compact vehicles as a function of the predicted odometer value. The figure shows no evidence that these

daily costs increase with the odometer value of the vehicle. The results are essentially unchanged if we plot

daily maintenance costs as a function of the vehicle age (right hand panel of figure 9). Thus, we conclude

that the only aging effects that we can detect in our econometric analysis are 1) the rapid decline in resale

values of vehicles as a function of their age and odometer value, and 2) the “rental composition aging

effect”, i.e. the tendency for cars to be initially rented on long term contracts, but to gradually transition to

an increasing share of short term rental contracts and to spend more time on the lot as the vehicle ages.

4 Evaluating the Econometric Model: Simulated versus Actual Outcomes

In the previous section we described and estimated an econometric model of the rental company’s opera-

tions. In order to determine if this is a good model that accurately captures the key features of the behavior

of this company, this section presents comparisons of simulated outcomes from the econometric model to

the actual outcomes for each of the tree vehicle types analyzed in section 3.

Our stochastic simulation program starts with the purchase of a new vehicle. Random numbers are

drawn from a uniform random number generator to determine various outcomes. In general the “probabil-

ity integral transform method” is used to construct random draws from various conditional distributions.
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For example, assuming new cars start out in a lot spell, let F(d) denote the duration distribution for the

initial lot spell. A random duration d̃ in that spell is constructed by taking the inverse cumulative distribu-

tion evaluated at a random uniform draw ũ ∼U [0,1]. That is, we draw ũ and compute d̃ = F−1(ũ), where

F−1 is the inverse of the cumulative distribution function, defined by

F−1(u) = sup
d
{F(d) ≤ u}. (12)

If F is strictly increasing (which is true for continuous random variables) then F−1 is the usual inverse

function satifying F(F−1(u)) = u and F−1(F(d)) = d. However the general definition is also valid in

cases where d̃ is a discrete random variable, as in the case where d̃ is the duration of a spell measured in

days. We rely on the well known fact that if ũ ∼U [0,1], then d̃ = F−1(ũ) ∼ F , i.e. d̃ will have the correct

distribution function F .

At the end of the initial lot spell, the simulated car will make a transition into either a long term rental

contract or a short term rental contract with probability π(1|d̃,r0) and 1−π(1|d̃,r0), respectively, where

π is the rental state transition probability that we introduced (and estimated) in section 3, and r0 denotes

the initial lot spell. We determine the rental state by drawing a ũ ∼ U [0,1] random variable and if it is

less than π(1|d̃,r0) the car makes a transition to a long term rental spell, otherwise it enters a short term

rental spell. The duration in a rental spell is simulated in the same way. At the end of the rental spell,

another ũ ∼U [0,1] random variable is drawn in order to generate the number of kilometers driven during

the rental spell. We use the Erlang distribution F(o′|0,d,r) described in section 3, and generate the “in

odometer” reading (i.e. the odometer on the car when it returns from the rental spell) via the probability

integral transform, õ′ = F−1(ũ|0, d̃, r̃), where o = 0 is the initial odometer reading on a brand new car, and

d̃ is the simulated duration of the rental spell, and r̃ is the simulated rental spell type (long or short term).

This process continues until the point where a simulated vehicle replacement occurs, at which point the

simulation of this vehicle terminates and a random resale price is determined from a lognormal distribution

for resale values implied by the lognormal regression model for vehicle depreciation rates estimated in

section 3. Specifically, we draw a random resale price P̃t(ot ,τ) for car type τ after a sale on day t using a

randomly drawn standard normal random variable x̃ ' N(0,1) and the equation

P̃t(ot ,τ) = P0(τ)exp{α̂1(τ)+ α̂2(τ)+ σ̂(τ)x̃} , (13)

where (α̂1(τ), α̂2(τ), σ̂(τ)) are the estimated lognormal regression coefficients and standard error for car

of type τ from the logarithmic price depreciation regression in equation (3) in section 3.
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We simulate the company’s decision to sell a vehicle based on the vehicle’s odometer value, using

the cumulative replacement probability distributions in the left column of figure 5. Thus, at the start of

each simulation, we draw a random “replacement threshold” o from the cumulative distribution function

G(o|τ), where G is the cumulative probability that a car of type τ with odometer value o or lower will be

sold (the distributions in the left hand column of figure 5). Then as the simulation proceeds, the car will be

sold at the first eligible instance where the simulated rental vehicle’s odometer exceeds the random selling

threshold o. We use the term “first eligible instance” since we respect the fact that the company will not

sell a car if it is in the middle of a rental contract. We assume that the only feasible time for the company

to sell a car is the day it returns from a rental spell, or any day that the car is in a lot spell. In the former

case, if the firm decides to sell vehicle that a customer wants to rent again, it would provide the customer

with a newer replacement.

Figure 10 shows individual simulated rental histories for each of the three car types that we analyze,

i.e. compact, luxury, and the RV. Comparing this to figure 1, we see that the simulated histories appear

quite similar to actual rental histories for the three sample vehicles presented in figure 1. Of course,

there is a vast number of possible rental histories (indeed infinitely many of them) and the fact that we

can find three simulated histories that resemble the three actual rental histories we chose to display in

figure 1 should not necessarily convince a skeptical reader that our model is an adequate one. We need

to show that our estimated semi-Markov model of the company’s rental operations is capable of capturing

the entire distribution of possible outcomes for a wide variety of different measures of the operations,

revenues, profits, and returns earned by this firm. If we can show that our model provides a sufficiently

close approximation to the entire range of actual outcomes this company experiences, the reader can have

more confidence that our econometric model is a good one, and that it might be of use for simulating how

profits, rates or return and other variables of interest would change if alternative operating strategies were

adopted.

Figure 11 presents comparisons between simulated and actual distributions of the odometer and vehi-

cle age (in days) at which vehicles are replaced. Due to space constraints we present the results for the

luxury car type only, although the results for the compact and RVs are similar. The left hand panel of

figure 11 compares the actual distribution of odometer values (solid blue line) with the simulated distri-

bution (dashed red line). We see that the two distributions are close to each other, which is a result we

would expect since, by construction, we have drawn the odometer values at which the company replaces

its vehicles from the actual (empirical) distribution. Thus, the differences in the two distributions in the
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Figure 10 Simulated Rental Histories for the Three Car Types, Compact, Luxury and RV
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left hand panel of figure 11 are entirely due to sampling error in our random sample of 100 simulated cars.

The right hand panel of figure 11 compares the actual distribution of replacement ages to the one

implied by our econometric model. In this case we do not directly draw the age at which a car is replaced

from the empirical distribution of replacement ages (see middle right panel of figure 4), so there is no

guarantee that the simulated distribution of ages at replacement is close to the actual distribution. Indeed,

the simulated age at replacement is a result of a more complicated set of interactions that depend on other

estimated objects in our econometric model that determine the number of times a vehicle was rented, the

durations of these rental spells, and the numbers of kilometers driven per rental spell. This implies a

particular co-evolution of vehicle age and odometer values, so that when the simulated odometer value

exceeds the random replacement threshold o, there is a an implied replacement age as well.

The simulated and actual distributions of ages at replacement are further apart than for the distributions

of odometer values at replacement, although we do note that the mean simulated age at replacement, 2.6

years, is very close to the actual value, 2.7 years. The simulated distribution of replacement ages does

have a larger variance, with more replacements at younger ages and also at older ages compared to the

actual distribution. This discrepancy probably reflects the fact that the company’s replacement decisions

are more closely based on age than odometer value, and thus more tightly concentrated around the three

year replacement target that we discussed in previous sections. Even though age and odometer values are

highly correlated with each other, a purely odometer-based approximation to the company’s replacement

rule can be expected to result in a larger variation in replacement ages, with cars that have high simulated

utilization rates being younger than average at time of sale, whereas those with low simulated utilizations

rates being older than average at time of sale.

While we could adopt a more complex replacement rule that is based both on age and odometer and

other variables such as duration in the lot spell before the vehicle was replaced, we feel that the simpler

odometer-based replacement rule provides a sufficiently good approximation to the company’s behavior

and outcomes — as we will see in figures 12 and 13 which compare simulated versus actual distributions

of outcomes for twelve different outcome variables of interest. Another reason motivating our use of

an odometer-based approximation to the company’s status quo replacement policy is that as we shall

see in the next section, this enables us to cast the problem into a stationary Markovian decision process

formulation and thus to estimate the expected present discounted value of the company’s profits over an

infinite horizon. We will argue that the infinite horizon benchmark (which values the discounted profits

from an infinite sequence of rental cars, not just the currently operating rental vehicle) provides a more
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reasonable basis for comparing the profitability of alternative operating strategies than a finite horizon

benchmark, which calculates the discounted profits earned only by the current generation of autos over

their lifetimes.

Figure 12 shows that our econometric model provides a good approximation to the distribution of

different rental outcomes over a vehicle’s service life. The left hand panels compare the simulated versus

actual distributions of the number of long term and short term rental spells, and the number of lot spells.

The right hand panels compare simulated versus actual distributions of total days spent in each of these

spells. We see that our model not only does a good job of matching the mean values of the number of

spells and durations of each spell type, but it also does an extremely good job of capturing the overall

distributions as well. Matching both the number of duration of the various types of spells turns out to be

the key to accurate predictions of revenues, profits and returns.

Figure 13 plots comparisons of simulated versus actual distributions of the relevant financial variables.

The top left panel of figure 13 shows that our econometric model results in a distribution of proceeds from

sales of cars that is quite close to the actual distribution. This is evidence that our lognormal regression

model of vehicle price depreciation is a good one. The top right hand panel of figure 13 compares the

actual and simulated distributions of total maintenance costs. Although the mean maintance costs are val-

ues are close to each other, the simulated distribution of maintenance costs has much less variance. This

is to be expected, given our “shortcut” procedure for simulating maintenance costs that we described in

the previous section. That is, instead of trying to estimate the durations between successive maintenance

episodes, we simply “smoothed out” the distribution of maintenance costs to an equivalent per day main-

tenance cost, and thus, our estimate of total maintenance costs is simply equal to the service life of the

car (in days) times the average maintenance cost expenditures per day. While it is certainly possible to

improve on the way we model maintenance costs, as we will see shortly, maintenance costs are a distinctly

second order aspect of the rental car business, in the sense that these costs are dwarfed by rental revenues

and the purchase and resale price of the vehicle. Indeed, we see that the total maintenance cost is only

about 1/12th of the average resale value for the luxury car type, and about 1/23rd of the cost of a new car.

The middle two panels of figure 13 plot the distribution of total revenues earned from long and short

term rental contracts. Once again, our econometric model does an extremely good job not only in matching

the mean revenues, but also in capturing the overall distribution of revenues. We see that for the luxury car

type, that long term contracts account for over 80% of the rental revenues earned. This is not surprising

given that of the approximately 800 days these cars were rented on average over their 985 day service life,
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Figure 13 Simulated versus Actual Costs, Revenues and Profits: Luxury – All Locations
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nearly 90% of the rental days were in long term contracts. However it might seem surprising in view of our

finding that there is a negative relationship between the fraction of time spent in long term contracts and

the IRR on the vehicle. This suggests that long term contracts are less profitable than short term contracts,

and thus the company should try to allocate a greater share of the vehicle’s rentals to short term instead

of long term contracts. However as we noted above, there are reasons to distrust any conclusions based

on the simple IRR regression in table 1 and we will return to the issue of the relative profitability of long

verus short term rental contracts in the next section.

The bottom two panels of figure 13 compare the actual and simulated distributions of total profits and

internal rates of return, IRRs. Once again our econometric model provides a very good estimate of mean

total profits and mean IRR, although the simulation results result in a distribution of total profits that has

a larger variance than the actual distribution, and a distribution of IRRs that has a lower variance than the

the actual distribution. We are not quite sure why the econometric model should overpredict the variance

of total profits and underpredict the variance of IRRs, but the reassuring thing to notice is that it does

correctly predict mean total profits and the mean IRR. Since we model the company as a an expected profit

maximizer (i.e. the company is not “risk averse”), only the mean values of profits matters: an expected

profit maximizing firm would be indifferent between two different operating strategies that result in the

same mean profits, even though one of the strategies results in a larger variance of profits.

In any case, from our perspective, the econometric model we have formulated provides a sufficiently

good approximation to the company’s actual operations that we think it should be a credible model to

use to evaluate the consequences of certain modifications in the company’s operating strategy. That is,

we can simulate the econometric model under a range of alternative hypothetical scenarios, and use it

to predict profits and rates of return and see how these compare to the company’s status quo operating

policy. However for reasons we will elaborate on shortly, there are certain modifications to the company’s

operating strategy for which we have little data available to base a prediction. An example would be the

predicted effect of a large increase in rental rates. Of course, we would expect a large rise in rental rates

would lead to fewer rentals, and this would change the stochastic structure of durations and transitions

between rental states. Since we do not have any observations on large variations in rental rates in the past,

we have no basis for estimating or extrapolating how the stochastic structure of the econometric model,

and thus the implied distribution of profits would change as a result of significant increases or decreases in

rental rates. Thus, we need to exercise caution and clearly demarcate hypothetical simulations for which

we lack adequate data to make a reliable prediction about how certain changes in the company’s operating
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strategy would affect its expected revenues and profits.

5 Characterizing the Optimal Replacement Policy

While it is possible to evaluate specific hypothetical alternatives to the company’s status quo operating

policy using simulation methods similar to the previous section, there are more efficient methods available

for characterizing the optimal replacement policy that involve searching over what is effectively an infinite

dimensional space of all possible replacement policies. Mathematically, the optimal replacement problem

is equivalent to a specific type of optimal stopping problem known as a regenerative optimal stopping

problem (see Rust, 1987). The term “regenerative” is used, since the decision to replace a vehicle does not

stop or end the decision process, but rather results in a “regeneration” or “rebirth”, i.e. a replacement of an

old vehicle by a brand new one.

We use the method of dynamic programming to formulate and solve the optimal stopping problem.

We show that the optimal strategy takes the form of a threshold rule, i.e. the optimal time to replace a car

occurs when its odometer value o exceeds a threshold value o(d,r,τ) that depends on the current rental

state r, the duration in that state d, and the car type τ. Using numerical methods, we solve the dynamic

programming problem and calculate the optimal stopping thresholds o(d,r,τ) for the compact, luxury and

RV car types and the associated optimal value functions V (r,d,o,τ). This function provides the expected

discounted profits (over an infinite horizon) under the optimal replacement policy for a vehicle that is in

state (r,d,o).

It is also possible to compute the value of any alternative operating strategy µ, which can include

mixed or probabilistic operating strategies where the decision to replace a car is given by a conditional

probability distribution µ(r,d,o,τ). We let Vµ(r,d,o,τ) denote the expected discounted profits (again over

an infinite horizon) under the alternative replacment policy µ. We will calculate both V and Vµ where µ is an

approximation to the company’s status quo operating policy. Thus, the difference V (r,d,o,τ)−Vµ(r,d,o,τ)

will represent our estimate of the gain in profits from adopting an optimal replacement policy. As we noted

in the introduction, the optimal policy entails keeping cars significantly longer than the company currently

keeps them, but by doing this, we show that the company can increase its expected discounted profits by

over 10%.

The optimal stopping problem emerges from the solution to the Bellman equation, which is a recur-
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sively defined formula the value function V given by

V (r,d,o) = max
[

EP(o)−P+βEV(r0,0,0),ER(r,d,o)−EM +βEV(r,d,o)
]

(14)

where we suppress the τ notation under the understanding that separate Bellman equations are solved for

each of the three car types τ ∈ {compact, luxury,RV}. In the Bellman equation (14), P denotes the cost of

a new car, EP(o) is the expected resale value of a car with odometer value o, ER(r,d,o) is the expected

rental revenue from renting the car to customers, EM is the expected daily cost of maintaining the car

including the cost of cleaning cars at the end of rental contracts, and EV is the expected discounted value

of future profits from operating a sequence of rental cars (possibly until the infinite future).

There are two EV functions in the Bellman equation, EV (r,d,o) and EV(r0,0,0). The term EV (r,d,o)

denotes the expected value of an existing car which has an odometer value of o and has been in rental state

r for a duration of d days. The term EV (r0,0,0) denotes the expected value of a new car just after it has

been purchased when it is on the lot waiting for its first rental. The notation r0 denotes the first lot spell.

To economize on states, we actually assuming that this function can be represented in terms of lot states

r = 3 and r = 4 (where recall these are lot states where the previous rental spell was either a long term

contract or a short term contract, respectively), as

EV(r0,0,0) = [ηEV (3,0,0)+(1−η)EV (4,0,0)] (15)

where the parameter η ∈ (0,1) is chosen so that the weighted average duration distributions and the tran-

sition probability for the initial lot spell matches the mean duration for initial lot spells that we observe in

the data, and results in the same fraction of cars whose first rental spell is a long term rental as we observe

in the rental data set.

The left hand term on the right hand side of (14) is the expected value of replacing a current vehicle

with a new one. Thus, EP(o)−P is the expected cost of replacement, i.e. the expected resale value of

the existing car (which has odometer value o) less the cost of a new replacement car P, plus the expected

discounted value from tomorrow onward, βEV(r0,0,0). We assume that a brand new car has an odometer

value of o = 0 and starts its life a lot spell with a duration of d = 0.

The Bellman equation (14) actually applies only when the car is in a lot spell (r ∈ {3,4}) or before

the first day of a rental spell (d = 0 if r ∈ {1,2}), since we assume that the company will not interrupt an

ongoing rental contract to sell a vehicle. Thus, for cars in the midst of a rental spell, (r = 1 or r = 2 and

d > 0), we have

V (r,d,o) = ER(r,d,o)−EM +βEV(r,d,o). (16)
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The EV (r,d,o) function is a conditional expectation of the value function V (r,d,o). For lot spells, r > 2,

we have

EV (r,d,o)= h(d,r) [V (1,1,o)π(1|r,d,o)+V (2,1,o)[1−π(1|r,d,o)]]+[1−h(d,r)]V (r,min(d+1,31),o).

(17)

What this equation says is that with probability h(d,r) the lot spell ends and the car will transit either to

a rental spell under a long term contract r = 1 with probability π(1|r,d,o) or a rental spell under a short

term contract with probability 1−π(1|r,d,o) = π(2|r,d,o) since we have ruled out self-transitions back to

the lot, π(r|r,d,o) = 0 for r > 2. With probability 1−h(d,r), the lot spell continues and the value function

in this case will be V (r,d + 1,o), reflecting an increment of 1 more day to the duration counter, unless

d ≥ 31 in which case d remains at the absorbing state value of d = 31. We accomodate the absorbing

state assumption for duration in lot spells by writing dt+1 = min(dt + 1,31) in the equation for the value

function above.

For rental spells, r ∈ {1,2}, we have

EV (r,d,o) = h(d,r)
�

o′

[

∑
r′

V (r′,0,o′)π(r′|r,d,o)

]

f (o′|r,d,o)do′ +[1−h(d,r)]V (l(r),d +1,o), (18)

where l(r) is the lot state following a termination of rental state r, i.e. l(1) = 3 and l(2) = 4, and f (o ′|r,d,o)

is the conditional density of the number of kilometers on the odometer of a car returning from a rental spell

of type r that has lasted d days and started with an odometer value of o. Thus, if a car is in a rental spell, it

will either remain in the rental spell for another day with probability 1−h(d,r) (unless d ≥ 31, in which

case h(d,r) = 1), or with probability h(d,r) the rental spell ends and the car transits to a new rental state

r′, which will either be a lot spell, r′ > 2, or a rental spell under a short contract r′ = 2, or a long term

contract r′ = 1. If a car remains in a rental spell, the company will not know the odometer reading until the

car returns from the spell. Thus, we keep the odometer state variable o fixed at its original value as long as

a car continues its current rental spell. However if a car returns from a rental spell, the company learns the

mileage travelled by the customer, o′−o, and thus the odometer state variable increases from o to o′. As

noted above, we assume that the total mileage driven under a rental contract that has lasted d days and is

of type r ∈ {1,2} is an Erlang distribution with parameters d and λr, where λr is the mean mileage driven

per day by customers under contract type r.

Finally we specify the expected rental revenue function, ER(r,d,o). Initially we assume that long term

and short term contracts allow unlimited kilometers and are charged on a daily rate, except with an early
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return penalty for long term contracts. Thus for short term contract, r = 2, we have

ER(2,d,o) = h(d,2)EDR(2)d, (19)

where EDR(2) is the expected daily rental rate for a short term contract. We multiply by the hazard since

we assume that the rental is paid only at the end of the rental spell, but no revenue is received otherwise

(i.e. if the rental contract continues another day). This expected value accounts for cases where cars are

rented multiple times in the same day as “chauffered vehicles” and reflects the expected sum of all rental

revenue received on such days less the amount paid to the chauffer.

For long term rentals, there is a lower per day rate, EDR(1) provided the vehicle is rented for suffi-

ciently many days, say d. Otherwise the car is treated as an early return and there is a per day penalty rate,

ρ, added on for such early returns. Thus, the expected revenue function is

ER(1,d,o) =

{

h(d,1)EDR(1)d if d ≥ d
h(d,1)[EDR(1)+ρ]d if d < d

(20)

Now consider the non-regenerative optimal stopping formulation of the car replacement problem. This

formulation of the problem differs from the regenerative optimal stopping by focusing only on the sale of

the existing car: it ignores the issue of replacing the current car with another new one when the current is

sold, and the infinite sequence of replacements over the infinite future. In this formulation, the problem is

to determine a stopping time (i.e. time to replace the car) that maximizes the firm’s expected discounted

profit from operating that particular car, but we do not assume that when this car is sold that it will be

replaced by a new one. This effectively makes the problem a finite horizon problem, but with a random

horizon (the horizon equals the random stopping time). The Bellman equation for this problem is

V (r,d,o) = max
[

EP(o),ER(r,d,o)−EM +βEV(r,d,o)
]

(21)

Comparing this to the Bellman equation for the infinite horizon regenerative optimal stopping formula-

tion of the problem we see that the value of stopping is equal to EP(o), the expected selling price of

the car, whereas in the regenerative optimal stopping problem the value of stopping equals EP(o)−P+

βEV (r0,0,0) which equals the expected selling price plus the “net continuation value” βEV (r0,0,0)−P.

The latter value equals the expected discounted value of replacing the car with a new one, less the cost of

that car. The continuation value actually represents the net value of an infinite stream of future replace-

ments (at random future stopping times), and is generally expected to be positive.

While it is possible that more complicated types of optimal replacement rules could arise, the optimal

replacement policy will generally takes the form of an optimal stopping threshold o(r,d). This is simply a
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rule that says that it is optimal to keep the current car if its odometer o satisfies o < o(r,d) and to replace

the car otherwise. The optimal stopping threshold is the value of o where the firm is indifferent between

keeping the car and replacing it. That is, it is the solution to the equation

EP(o(r,d))−P+βEV(r0,0,0) = ER(r,d,o(r,d))−EM +βEV(r,d,o(r,d)), (22)

in the regenerative optimal stopping formulation of the optimal replacement problem and

EP(o(r,d)) = ER(r,d,o(r,d))−EM +βEV(r,d,o(r,d)), (23)

Note that EP(o) is a decreasing function of o, but P−βEV(r0,0,0)+ER(r,d,o)−EM +βEV (r,d,o) will

also be a decreasing function of odometer, o. However in this problem the latter function decreases more

rapidly as a function of o than EP(o) and there is generally a unique solution o(r,d) to both equations

above.

Since −P+βEV(r0,0,0) > 0 (this condition tells us that the present value of future operating profits

exceeds the purchase price of a car, otherwise if this condition is not satisfied, the company would not

replace the current car once they sell it), it would appear that o(r,d) should be lower in the regenerative

optimal stopping formulation of the replacement problem (22) since the left hand side of this equation is

a parallel upward shift of the EP(o) function, which is less steeply sloped (in o) than the right hand side

terms, ER(r,d,o)−EM +βEV(r,d,o).

However there is a complication with this reasoning since the EV functions on the right hand sides

of equations (22) and (23) are not the same: there are two different value functions that we are taking

expectations of. To be clearer, let the expected value in the non-regenerative optimal stopping problem be

EVf h(r,d,o) and the expected value in the regenerative optimal stopping problem be EVih(r,d,o), where

(“ih” denotes infinite horizon and “fh” denotes finite horizon). It is not difficult to show that EVih(r,d,o) >

EVf h(r,d,o), so whether oih(r,d) ≥ o f h(r,d) is theoretically ambiguous: it depends on whether the upward

shift in left hand side of equation (22) relative to equation (23) is larger than the upward shift in the right

hand side of equation (22) relative to equation (23).

We will show in the next section that in fact, the optimal stopping threshold for the regenerative opti-

mal stopping formulation of the optimal replacement problem is indeed lower than the optimal stopping

threshold for the non-regenerative optimal stopping formulation of the problem. The intuition for the result

is that delaying replacement a car is more costly for the firm in the regenerative optimal stopping problem,

since it postpones the net cash flows arising from purchases of all subsequent replacement cars. Thus,
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there is an added opportunity cost from delaying replacement of a vehicle in the regenerative optimal stop-

ping formulation of the problem compared to the non-regenerative optimal stopping formulation, and this

opportunity cost makes it optimal to replace cars sooner: i.e. oih(r,d) < o f h(r,d).

We believe that the regenerative optimal stopping formulation of the optimal replacement problem is

the appropriate version to consider, since in fact, this firm is a continuing business that replaces the vehicles

in its fleet as opposed to just selling them off and not replacing them. However the non-regenerative

stopping formulation is relevant to describe optimal behavior in a shut down scenario, i.e. when P >

βEV (r0,0,0), the firm will want to operate its existing rental vehicles optimally over their remaining

lifetimes, but without replacing them at the time they are sold. In the next section we will show that

βEV (r0,0,0) is many times larger than P, so in fact, the shut down scenario is not relevant for any of the

car types we have analyzed.

6 Calculating the Optimal Replacement Policy: Numerical Results

As we noted above, if we solve the regenerative optimal stopping problem under the assumption that the

only aging effects are 1) the depreciation in vehicle resale values, and 2) the “rental contract composition

effect” (see section 4), then the optimal stopping thresholds is o(r,d) = ∞, i.e. it is never optimal to sell

an existing vehicle. These results are due to our assumption that average daily maintenance costs EM

do not increase as a function of odometer value, and that rental rates do not decrease as a function of

odometer values. While there is substantial empirical justification for these assumptions over the range of

our observations (see the discussion in section 5), it is questionable that these assumptions will continue

to be valid as a vehicle’s odometer and age increases indefinitely, far beyond the range for which we have

any observations.

In order to make headway, we proceed to calculate the optimal replacement policy under extremely

conservative assumptions about increases in maintenance costs and decreases in rental rates beyond the

range of our data. That is, we will assume that beyond the range of our observations, maintenance costs

increase at a very rapid rate as odometer increases, and that to induce customers to rent older vehicles,

daily rental rates must be steeply discounted. Figure 14 displays the assumptions we have used. The

left hand panel of figure 14 shows the multiplication factor that we apply to daily maintenance costs as a

function of the vehicle’s odometer. Thus, consistent with our data, over the range from o ∈ [0,130,000)

kilometers, we assume daily maintenance costs do not increase, however outside the range of our data, we
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Figure 14 Multiplication Factors for Daily Maintenance Costs and Rental Rates: All Car Types – All Locations

assume that daily maintenance costs start increasing at a very rapid rate, reaching a level that is 11 times

the daily maintenance costs of vehicle with 130,000 kilometers by the time the vehicle reaches 400,000

kilometers.

For rental rates, we assume that in order to induce consumers to rent older vehicles, the company must

reduce the daily rental rates on the older vehicles in its fleet at a rate that is linear in the vehicle’s odometer

value. We assume a very steep decline in rental rates, so that at the point a vehicle reaches 400,000

kilometers the daily rental rate would be zero. For a vehicle with 265,000 kilometers, the rental rate it can

charge is only 1/2 the rate it charges for vehicles that have 130,000 or fewer kilometers on their odometers.

As we noted, the firm does in fact have a small number of vehicles in its fleet with odometer values in

the range (130000,265000] yet it does not offer discounts on rentals of these vehicle and nevertheless still

succeeds in renting them to customers. We view this as evidence that the rental discount function that we

have assumed is actually much steeper than necessary to induce some of the firm’s customers to rent older

vehicles. Indeed, as we noted in the introduction, the company conducted an experiment to discount rental

rates for vehicles over 2 years old, but stopped it when it found that virtually all customers preferred to rent

an older car at a 20% discount rather than a newer car at the full daily rate. This suggests that discounts

could be popular with many customers and that required discounts would be much less drastic than what

we have assumed.

Figure 15 shows our calculated optimal replacement thresholds o(d,r,τ) and the value functions V (d,r,o,τ)

for the three car types τ ∈ {compact, luxury,RV}. The left hand panels display the replacement thresholds
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o(d,r,τ). The solid blue line is the replacement threshold for the case where a car is in a lot spell of type

r = 3, i.e. the previous rental spell was a long term contract, and the red dashed line is for a car that is in

a lot spell of type r = 4, i.e. where the previous rental was a short term contract. In addition, the firm can

decide whether or not to replace a car at the start of a rental spell, and the figures also present the these

thresholds, o(0,1,τ) (the threshold applicable at the start of a long term rental spell) and o(0,2,τ) (the

threshold applicable at the start of a short term rental spell).

We see that for type r = 3 lot spells, the replacement threshold is approximately equal to 145,000

kilometers for all three car types. This threshold is basically flat as a function of the duration in the spell,

except that in the case of the RV, the threshold starts out at about 157,000 kilometers and then decreases

with the duration on the lot to about 146,000 kilometers for cars that have been on the lot 30 days or more.

The fact that the replacement threshold is essentially flat as a function of duration in the lot for a type

r = 3 lot spell is due to two factors: 1) the hazard rate for exiting the lot is essentially flat as a function

of duration on the lot d, and 2) there is a very high probability that at the end of the lot spell the car will

transit to another long term rental spell. These two factors imply an absence of “duration dependence”

(i.e. length of time on the lot does affect the chances that the vehicle will leave the lot the next day) which

in term implies an absence of duration dependence in the replacement threshold o(d,3,τ).

However for type r = 4 lot spells, i.e. lot spells that were preceded by a short term rental spell, there

is duration dependence: i.e. the probability of leaving the lot spell is a decreasing function of the length

of time spent on the lot d. In addition, there is a significantly lower chance that the next rental spell will

be a long term rental, and thus a high chance that the vehicle will have a relatively rental spell in a short

term contract and will return to the lot again. Thus, a vehicle that is current in a type r = 4 lot spell is

more likely to be idle in the future, and this fact, combined with the decreasing chance of exiting the lot

as lot duration d increases, causes the replacement threshold o(d,4,τ) to decline with d. For all three car

types, we see fairly steep declines in o(d,4,τ). For example, for the compact, the replacement threshold

starts out at approximately 164,000 kilometers on the first day of the spell, and declines to about 144,000

kilometers by the 31st day on the lot.7

It is also not surprising that the replacement thresholds are significantly higher at the start of a short or

long term rental spell. The company has the option to sell the car at this point, or to let the renter take it. It

seems intuitively obvious that the replacement threshold should be higher when the company has “a bird in

7Due to our constant hazard assumption for lot spell durations longer than d = 31, this 144,000 kilometer threshold
applies to all durations over d = 31.
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Optimal Replacement Strategy: Compact, all locations

Replacement Threshold, 1st day of long term rental 156.2
Replacement Threshold, 1st day of short term rental 201.6
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Optimal Replacement Strategy: Luxury 2, all locations

Replacement Threshold, 1st day of long term rental 175.3

Replacement Threshold, 1st day of short term rental 192.1
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Optimal Replacement Strategy: RV, all locations

Replacement Threshold, 1st day of long term rental 170.6
Replacement Threshold, 1st day of short term rental 202.5
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Figure 15 Optimal Decision Rules and Value Functions: All Car Types – All Locations
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the hand” than for a car that is on the lot waiting to be rented. For the compact, the replacement threshold

at the start of a long term rental contract is o(0,1,τ) = 156,200, which exceeds the 145,000 kilometer

threshold for a car in the first day of a lot spell that has just emerged exited a long term rental spell. We

see that the replacement threshold at the start of a short term rental contract is even higher. In the case of

the compact the threshold is o(0,2,τ) = 201,600 which is significantly higher than the 164,000 kilometer

threshold for a car that is fresh on the lot, having just emerged from a short term rental spell. The disparity

in replacement thresholds at the start of long and short term rental spells is not as great for the other two

car types. The explanation is that short term contracts are much more lucrative than long term contracts

for the compact car type compared to the other two car types, since the ratio of daily rental rates for short

term contracts to long term contracts is significantly higher for the compact car type than for the other two

car types. Thus, the company is relatively more eager to take advantage of a short term rental opportunity

for its compact cars, and this makes it optimal for it to have a significantly higher replacement threshold at

the start of a short term rental contract.

The right hand panels of figure 15 plot the calculated value functions for each of the three car types as a

function of odometer o. We plot three functions: the value of keeping a car on the first day of a rental spell,

V (o,1,r,τ) where r = {3,4}, and the expected value of selling the vehicle, EP(o,τ)−P(τ)+βEV(0,r0,0)

as a function of its current odometer value o. Clearly, if the value of keeping the car exceeds the value of

selling it, then it is optimal to keep it. Thus, the first point at where the value of keeping the car equals

the value of selling it constitutes the optimal replacement threshold o(d,r,τ). Thus, for the compact, if we

were to enlarge the top right hand panel of figure 15 we would see the red dashed line (the value of keeping

a car when it is in lot spell type r = 4) first intersects the green dash-dotted line at 201,600 kilometers, so

this constitutes the optimal replacement threshold that is appropriate at the start of a short term rental spell

that we noted previously. The solid blue line is the value of keeping a car when it is in lot spell type r = 3,

and it first intersects the green dash-dotted line at 156,200 kilometers, which is the optimal replacement

threshold at the start of a long term rental spell.

For all three car types, the “rental value”, i.e. the difference in the value of keeping and selling it for

a new one is a relatively steeply decreasing function of odometer value. While we noted that the resale

value of a car is a sharply decreasing function of the vehicle’s odometer (except in the case of the RV

where the rate of depreciation is much flatter after the initial rapid depreciation that occurs in the first

20,000 kilometers), we see that the depreciation in a vehicle’s rental value is an even steeper function

of its odometer value than its resale value. This result is an interesting contrast to the relatively mild
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“aging effects” that we found in our econometric analysis in section 3. Note that our assumed sharp drop

off in rental rates and sharp rise in maintenance costs that we displayed in figure 14 do not start until

after 130,000 kilometers, yet the decline in value of a car occurs immediately. The only aging effects we

uncovered in our econometric analysis before 130,000 kilometers was a very mild tendency for cars to

switch from long term contract to short term contracts, and for the fraction of the time they spend idle on

the lot waiting to be rented gradually increases. But this “rental contract composition aging effect” is not

steep enough to explain the sharp declines in values of rental vehicles that we see in figure 15.

The key explanation for the rapid drop in the value of a rental car as a function of odometer is the

horizon effect. Essentially the instant a company purchases a new car, it represents an large investment

that will be be earning the company a stream of profits for a finite period of time until the car reaches its

replacement threshold at which time the first will have to incur another large expenditure to buy another

new vehicle. Thus, the values of keeping an existing car in figure 15 represent expected future profits over

the life of the car, but the new purchase price of the current vehicle is treated as a a “sunk” or “bygone

expense.” Thus, as the vehicle’s odometer increases from zero towards the optimal replacement threshold,

the expected discounted value of remaining profits on the current car necessarily decreases since there is

a shorter remaining life for the current car over which this profit stream will be collected. Then when

the company finally replaces the vehicle (the value of which is represented by the green dash-dotted lines

in figure 15), the firm does actually incur the cost of buying a new replacement vehicle and the process

starts over again. Thus, the difference between the value of keeping a (just purchased) new vehicle and

immediately trading it for another new vehicle, V (0,r0,0)− [EP(0)−P + βEV (0,r0,0)], represents the

expected discounted profit that the firm expects to earn on the current vehicle over its lifetime. Thus,

for the luxury car type, we have V (0,r0,0) = 375,000 whereas the value of immediately selling a newly

purchased car is approximately EP(0)−P+EV (0,r0,0) = 366,000. Thus, the company expects to make

a net discounted profit of approximately $9,000 over the service lifetime of a single luxury vehicle. The

total discounted profits are higher, $375,000, since this is the expectation of discounted profits earned from

an infinite sequence of rental vehicles.

Figure 16 plots value functions and expected revenues as a function of duration of the spell, d, keeping

the other state variables r and o fixed. We fix o at 47,500 kilometers and plot 4 lines for V (d,r,o) as a

function of d for the 4 possible values of r ∈ {1,2,3,4}. We see that for the compact car type, the highest

value function is for when the car is in a short term rental spell r = 2, depicted by the dashed red line in the

top left panel of figure 16. This is significantly higher than the value of being in a long term rental spell,
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which is depicted by the solid blue line. On the other hand, for the luxury car type, the middle left hand

panel of figure 16 shows that the long term contracts are more profitable than short term contracts. The

RV is similar to the compact in the sense that short term rental contracts are also more profitable than long

term contracts.

The right hand panels of figure 16 provides insight into why short term contracts are relatively more

profitable than long term contracts for the compact and RV car types, but not for the luxury. The right

hand panels plot the expected rental revenues net of expected daily maintenance costs as a function of the

duration of the rental spell. Recall that the firm does not actually collect the rental revenues until the end

of the rental spell, at which time the total duration of the rental spell becomes known. Thus, the expected

rental revenues are given by formulas (19) and (20) in the previous section, as a product of the daily rental

rate, times the duration d times the hazard function h(d,r). The hazard function is required because it

provides the probability that the rental spell ends on the (d +1)st day, so that with probability h(d,r) the

company collects total revenue ER(r)d and with probability 1−h(d,r) it collects zero (since the latter case

provides the probability that the car does not return on day d +1, so no rental revenues would be collected

yet).

We see that expected rental revenues for a long term rental spell, depicted by the solid blue line, are

essentially zero until around 28 days, when the expected revenues start to rise. The reason that expected

revenues are zero prior to 28 days can be easily seen from the solid blue line in the left hand panel of fig-

ure 5: this is the duration distribution for rental spells and it shows that there is essentially zero probability

that a car in a long term rental will be returned prior to 28 days. By the longest possible duration, d = 31,

the hazard rates rise to 1, and so the expected rental revenues increase monotonically to the total revenues

for the maximum rental term, 31∗ER(r) for r = 1 and r = 2. The ratio of these “full term rental revenues”

is simply equal to the ratio of the daily rental rates, and since the company charges a higher per day rate

for short term rentals than for long term rentals, the revenues for short term contract that lasts 31 days are

always significantly higher than for a long term contract that lasts 31 days.

Of course, it is very unlikely that a short term contract will last 31 days: as you can see from the left

hand panel of figure 5, the duration distribution for short term rentals has most of its mass for durations of

5 or fewer days. Thus, the ex ante expected duration (i.e. not conditioning on duration, d) of a short term

rental spell is only a few days, whereas the expected duration of a long term rental contract is about 30

days. Thus, even though short term contracts have higher daily rental rates, it is not clear a priori whether

they are more profitable than long term contracts: we need to account for a greater probability of idle
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periods between successive short term contracts when comparing their profitability to long term contracts.

Recall that our regression analysis results in table 1 predicted that long term contracts where uniformly

less profitable, since the regression coefficient on the variable “Fraction Rented Long Term” was negative

(although we note that it was sigificantly negative for the compact and RV car types, but not significantly

different from zero in the case of the luxury car).

However we can see from figure 16 that at least under an optimal replacement policy, the long term

contract is predicted to be more profitable for the luxury, but less profitable for the compact and RV. This

finding is an interaction of the relative rates the company charges for short term versus long term rentals:

for luxury vehicles, the company’s rental rate for long term contracts is 67% of the daily rate it charges

for short term rentals, whereas for the compact and RV, the company’s daily rate for long term contracts

is only 45% and 47% of the corresponding short term rates, respectively. Thus, the company’s rental rate

structure discounts rental rates for long term rentals of luxury cars less than it does for compact or RVs.

This is part of the explanation why long term rentals are more profitable for the luxury car type. The other

part of the explanation is more subtle, but it lies in the estimated transition probabilities and hazard rates:

there is a higher probability of “roll over” of long term rental contracts for the luxury compared to the other

two car types, and a higher probability that a car in a lot spell will return to another long term contract for

luxury car types than for compacts or RVs. Thus, long term rentals of the luxury car type have a higher

“effective capacity utilization rate” per unit time than for short term rentals, so this is the other part of the

explanation why long term rentals are more profitable for luxury cars, but not for compact or RVs.

The other thing to notice about the left hand panels of figure 16 is that we generally find the expected

result that the value of being in a lot spell is lower than being in a rental spell of the corresponding type (i.e.

being a long term rental spell is more profitable than being in lot spell where the previous rental was long

term, and being in a short term rental spell is more profitable than being in a lot spell when the previous

rental spell was short term). However, we see in the top left hand panel of figure 16 that this does not hold

in the case of a compact: the value of being in a type r = 3 lot state is higher than the value of being in a

type r = 1 rental spell! This is due to the fact that long term rental contracts are so much less profitable

than short term rental contracts for the compact car types. When compact car is in a lot spell, there is a

better chance that it will make a quick transition to a much more profitable short term rental spell than if

it is in a long term rental contract. We also see that the value of being in a type r = 4 lot spell (i.e. where

the previous rental spell was a short term contract) is higher than being in a type r = 3 lot spell. This is

because a type r = 4 lot spell has a higher probability of transition into to a short term rental spell than a
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type r = 3 lot spell.

In order to learn more about the implications of the optimal replacement policy, particularly about

the distribution of ages at which replacements occur, we resorted to stochastic simulation of the optimal

replacement policy using the same basic approach that we used to simulate the econometric model under

the status quo replacement policy in section 4. Figure 17 presents a comparison of the simulation results

(for 100 simulated cars of each of the three car types) and the firm’s actual outcomes under its status quo

replacement policy. The left hand panels compare the simulated and actual distribution of odometer values

of cars at replacement, and the right hand panel compares the distributions of ages at replacement.

We see that under the optimal replacement policy, the mean odometer value at replacement is more

than twice as large as the mean value under the status quo. The variance in odometer values about the

mean value is also less under the optimal replacement policy than under the status quo. The three right

hand panels of figure 17 compare the actual distribution of ages at replacement to the distribution predicted

to occur under the optimal replacement policy. We see that under the optimal replacement policy the mean

age at replacement of all three car types is almost twice as high: it ranges from 4.6 to 5.0 years under the

optimal replacement policy versus being between 2.6 to 2.7 years under the status quo.

We emphasize that it is optimal to keep these vehicles longer despite the rather substantial increases in

maintenance costs and reductions in rental rates that we have assumed occurs after 130,000 kilometers. We

can see from the right hand panels of figure 17 that almost all replacements that occur under the optimal

replacement policy occur well after 130,000 kilometers, when these “adverse” aging effects have kicked

in. Note, however, that all of the cars are replaced before they reach 265,000 kilometers, which is the point

where rental rates are discounted to 50% of the rate for a vehicle with 130,000 kilometers. Also, according

to our assumptions daily maintenance costs are about 5 times higher for vehicles at 265,000 kilometers

than the values we observe for vehicles we observe that have fewer than 130,000 kilometers. So the

combination of the rental discounts and rapid increase in maintenance cost do take its toll, and greatly

alter the optimal replacement policy. Instead of it being optimal to never replace its existing vehicles, once

we make the assumptions about rapidly rising maintenance costs and rapidly declining rental rates after

130,000 kilometers, it is no longer optimal for the company to keep and maintain its existing stock of

cars indefinitely. However what is surprising is that despite our extremely conservative assumptions, the

optimal replacement policy still entails keeping cars about twice as long as the company currently keeps

them.

Figure 18 compares the actual distributions of internal rates of returns that the company realizes on
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each of the three car types to the distributions of returns that result under the optimal replacement policy.

We see that mean returns are uniformly higher for all three car types. For example, the mean IRR for the

compact increases from 77% to 94%, the mean IRR for the luxury increases from 49% to 56% and the

mean IRR for the RV increases from 53% to 64%. We see that the distribution of returns has a greater

variance under the status quo replacement policy, and due to this higher variance, a small fraction of cars,

roughly 5%, achieve rates of return under the status quo that are higher than the highest possible return

earned under the optimal replacement policy. On the other hand, the upper 95% of the distribution of

returns under the optimal replacement policy is higher than the median return earned under the status quo.

Overall, we conclude that adoption of the optimal replacement policy results in a fairly significant upward

shift in the distribution of realized returns.

However a more straightforward way to compare the company’s status quo operating policy with the

optimal replacement policy is to compute and compare the expected discounted profits under the two

operating strategies. We feel that a “fair” comparison requires calculating the expected discounted profits

over an infinite horizon rather than comparing profits for only a single generation of vehicles. The reason

is that comparison that looks only at a single generation will always be biased towards strategies that

keep vehicles longer. The reason is, as we discussed previously, the company incurs a large “up front”

depreciation cost when it buys a new car. Thus, by keeping vehicles longer the company earns more rental

revenues that help to increase profits by “amortising” the initial depreciation expense over a longer service

life.

What a “single generation” analysis fails to account for, however, is that by postponing a replacement,

the profits from subsequent generations of vehicles are also postponed, and the postponement of these

future profits can represent a large “opportunity cost” that can outweigh the increased short term profits

from keeping vehicles longer. This is exactly the same sort of reasoning underlying our preference for

the infinite-horizon regnerative optimal stopping formulation of the optimal replacement problem over the

finite-horizon optimal stopping formulation that we discussed in the previous section.

However to compare the discounted profits under an infinite horizon, we need to make extrapolations

of the firm’s status quo replacement policy into the indefinite future, since our data obviously only covers

a relatively short time span of the firm’s operations. To make this calculation, we solved the following

analog of the Bellman equation for the value functions Vµ(d,r,o,τ), τ ∈ {compact, luxury,RV} where we
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Figure 18 Simulated versus Actual Internal Rates of Return: All Car Types – All Locations
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drop the dependence on τ in the equations below to economize on space

Vµ(d,r,o) = µ(d,r,o)[EP(o)−P+βEVµ(0,r0,0)]+[1−µ(d,r,o)][ER(d,r,o)−EM+βEVµ(d,r,o)], (24)

where µ(d,r,o) is the conditional probability that a car in state (d,r,o) is replaced under the status quo

replacement policy. We can solve this equation (which is a linear functional equation) using the same

numerical techniques that we used to solve for the value function under the optimal replacement policy.

By definition, it must be the case that the optimal replacement policy results in higher expected discounted

profits than under any alternative strategy µ, so we have

V (d,r,o) ≥Vµ(d,r,o), ∀ (d,r,o). (25)

However the question is “how far is the company’s existing replacement policy from optimality?” We can

answer this by computing the ratio V (d,r,o)/Vµ(d,r,o), which represents the factor by which the firm can

increase its discounted profits by adopting an optimal replacement policy. If this ratio is not too much

bigger than 1, then the company can rest comfortably that its status quo replacement policy is “almost”

optimal. If the ratio is substantially bigger than 1, then the company might want to re-evaluate its operating

strategy.

To simplify our analysis, we focus on comparing the value of a newly purchased brand new car that has

just entered the lot. Thus, in table 5 below we report V (0,r0,0), the value of a new car that has just arrived

in the lot under the optimal replacement policy, and Vµ(0,r0,0), the value of a new car that has just arrived

in the lot under the the firm’s status quo operating strategy µ. For µ we used the cumulative distribution

function for replacements as a function of odometer o only: our approximation to the firm’s replacement

policy does not depend on spell type r or duration in the spell d. This is justified by our findings in table 2

that once we account for odometer o, neither d and r provide huge enhancements in our ability to predict

when the firm replaces one of its vehicles. Table 5 also presents an “equivalent daily profit rate” which is

approximated as (1− β)V (0,r0,0) and (1− β)Vµ(0,r0,0) where β = exp{−r/365} is the daily discount

factor. For our calculations we have assumed that r = .03, and this implies a daily discount factor that is

quite close to 1, β = 0.99991781. According to the final value theorem, (see, e.g. Howard, 1971, p. 46)

for any convergent sequence {at} we have

lim
β→1

(1−β)
∞

∑
t=0

at = lim
T→∞

1
T

T

∑
t=1

at . (26)
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There are stochastic extensions of this result that imply that for β close to 1, (1−β)V (d,r,o) is close to

the “long run average profits”, which in our case corresponds to an equivalent daily profit.8

The first section of Table 5 presents the expected discounted values and the daily expected profit

equivalent values for the optimal replacement policy for each of the three car types that we analyzed.

Also, to provide an measuring stick for these numbers, the top line also presents the average price of a new

vehicle for each car type. We see that for the compact car, for example, the expected present discounted

value of profits is $268,963, which is 27.8 times the cost of a new compact car. Applying the final value

theorem, we find that this discounted profit is equivalent to about $22.11 in profits on a daily basis.

The second section of Table 5 presents the expected discounted value of profits under the status quo.

The expected discounted value of profits over an infinite horizon is $196,589, which is equivalent to $16.16

on a daily basis. Thus, we see that according to our predictions, the firm could increase its discounted prof-

its by 38% (i.e. V (0,r0,0)/Vµ(0,r0,0) = 1.37), if it adopted the optimal replacement policy, in combination

with our suggested “deep discounts” in rental prices of older vehicles.

We find that for the luxury car type, the firm’s replacement strategy is closer to optimality: its profits

would increase by 18% under the optimal replacement strategy. However for the RV, the firm’s existing

policy appears to be far from optimal: the present discounted profits are predicted to be 2.4 times higher

under the optimal replacement strategy.

Compact Luxury RV
All Locations All Locations All Locations

Quantity Value Value Value
P 9668 23389 18774

Expected Discounted Values Under Optimal Replacement Policy
V (0,0,r0) 268963 374913 327057
(1−β)V (0,0,r0) 22.11 30.81 26.88
V (0,0,r0)/P 27.8 16.0 17.4

Expected Discounted Values Under Status Quo Replacement Policy
Vµ(0,0,r0) 196589 318247 136792
(1−β)Vµ(0,0,r0) 16.16 26.16 11.24
V (0,0,r0)µ/P 20.3 13.6 7.3

Ratio of Expected Values: Optimal Policy versus Status Quo
V (0,0,r0)/Vµ(0,0,r0) 1.37 1.18 2.39

Table 5: Comparison of Profits/Returns: Optimal Policy versus Status Quo

8The statement of the stochastic version of the final value theorem is more complex and we omit doing so to save space,
but the basic result is the same as the deterministic version of the final value theorem given above.
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We conclude this section by undertaking another set of discounted profit calculations to show that our

conclusions are robust to even more conservative assumptions about the increase in maintenance costs

and required discounts in rental rates. Figure 19 presents a second set of more conservative multiplication

factors for maintenance and rental rates. Under our second scenario, we assume that maintenance costs

begin rising steeply even earlier, at 60,000 kilometers. We emphasize that this assumption is inconsistent

with our data, yet we make it anyway in an effort to see how this hypothetical would affect replacement

decisions and expected profits. The dotted red line in the right hand panel shows our assumption about

the required declines in daily rental rates. We have rental rates declining after 60,000 kilometers at even

a faster rate than we previously assumed, so that by the time a car reaches 210,000 kilometers, its daily

rental rate would be zero.

We do not have the space to discuss the optimal replacement policy implied by scenario 2 in any

detail, but as expected, it is optimal to replace cars even sooner under this more pessimistic scenario. Nev-

ertheless, the optimal replacement policy still entails keeping cars roughly twice as long as the company

currently keeps them, and even under these very adverse assumptions (which do not apply in our calcula-

tion of discounted profits under the status quo, the optimal replacement policy still results in significantly

higher profits than the status quo. We conclude that our main find is quite robust to variations in our

assumptions. Our estimates of the gains that can result from delaying the replacement of rental vehicles

are likely to be extremely conservative: most likely the company would not need to discount rental rates

as steeply as we have assumed, and if so, the gains it would realize from adopting an optimal replacement

strategy would be even larger than we have estimated.

Compact Luxury RV
All Locations All Locations All Locations

Quantity Value Value Value
Expected Discounted Values Under Optimal Replacement Policy

V (0,0,r0) 245680 337853 275614
(1−β)V (0,0,r0) 20.19 27.77 22.65
V (0,0,r0)/P 25.4 14.4 14.7

Ratio of Expected Values: Optimal Policy versus Status Quo
V (0,0,r0)/Vµ(0,0,r0) 1.25 1.06 2.01

Table 6: Robustness Check of Profits/Returns: Optimal Policy versus Status Quo
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Figure 19 Multiplication Factors used for Robustness Check: All Car Types – All Locations

7 Extensions to the Analysis

Our analysis has been focused mainly on the question of the timing of replacement decisions, and we

believe we have succeeded in providing convincing evidence that via modest changes in the company’s

operating strategy, it can significantly increase discounted profits. However our analysis leaves a number

of unanswered questions:

1. Given how successful this company is at what it does, how could it fail to recognize the benefits

from keeping its vehicles longer? Are there any overlooked constraints or regulations that might

explain why the company decides to replace its rental vehicles “too frequently”?

2. Our analysis of sales prices revealed very large variations in the price received for apparently “ob-

servationally equivalent” vehicles. Why would the company “precommitt” to selling a vehicle on

a particular date for the best price offered on that date, even if the best price seems below the fair

market value for the vehicle?

3. Our analysis of the relative profitability of long and short term rental contracts revealed that for some

vehicles, such as the compact car, short term contracts are significantly more profitable than long

term contracts. Why should this be the case? If long term contracts are so much less profitable, why

should the company allow its compact cars to be rented long term? Or alternatively, why doesn’t the

company increase the daily rates it charges for long term rental contracts?
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4. Our analysis also revealed big differences in the overall profitability of different vehicles. In par-

ticular, the stream of discounted profits from rental of the RV or luxury car types are 20 and 40%

higher, respectively. If these vehicles are so much more profitable, why not allocate more lot space

on the margin to luxury and RVs, or alternatively, increase rental rates on compact cars to increase

their relatively profitability?

These are some of the unanswered questions we have. As economists, we are accustomed to the

standard sorts of “marginal arguments” for optimal decision making. Thus, this company must select a

“portfolio” of vehicles for the lots in all of its 100 plus locations. Similar to standard portfolio analysis in

finance, at an optimal allocation the company should be getting roughly the same expected “risk adjusted

return” from an investment of $X in car type τ1 as it does for an equivalent investment in car type τ2,

otherwise if there is one type of car that has a higher return per dollar invested, then the firm would be

better off investing the marginal dollar in the car type that yields the highest possible returns.

Our analysis has revealed that of the three car types we have analyzed, the compact has the highest rate

of return even though it has the lowest discounted value of profits per car. It is not completely obvious that

the correct way to think about the firm’s allocation problem as choosing to invest in the car with the high

marginal return, or to allocate cars to a fixed level of lot space to maximize the overall value of discounted

profits. These two, both quite compelling ways of viewing the overall allocation problem, seem to result

in different allocations, at least on the margin. That is, if the company wants to get the highest return

on its investment, it would appear it should allocate more of its vehicle “portfolio” to compacts and less

to luxury or RVs. However if it is interested in maximizing the expected present value of profits, then it

would appear that it should allocate more of its vehicle portfolio to the luxury and RV car types.

There could be complimentarities between cars of different types, and the firm should try to cater to

its customers’ preferences, and clearly some customers will want to rent compacts, others will prefer RVs

and others will prefer to have luxury vehicles. If the company happens to be “stocked out” of a particular

customer’s most preferred type of vehicle, having a portfolio with sufficiently close substitutes may enable

the company to keep that customer, as opposed to the customer walking down to the next rental company

window to see if a competitor has their preferred vehicle in stock and ready to rent.

Our data does not include information on customers, their arrival rates to various rental locations and

driving/return patterns (i.e. the probability that a car rented at location A will actually be returned to

location B). Without more data on customer choices, and data on the company’s competitors, it is difficult
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for us to formulate a more comprehensive model of the overall operations of this company. However we

believe the analysis we have conducted in this paper constitutes a fundamental “building block” toward

a more complete analysis of this optimal (i.e. profit maximizing) operation of this company. Whatever

portfolio allocation of rental vehicles, and rental rates the company chooses, it will want to adopt a vehicle

replacement policy that is optimal conditional on its vehicle portfolio and rental rate structure. For the

moment, take the number of locations that the company rents vehicles from and the total space available

for storing cars at each location as fixed (there is an even higher level decision that the firm faces about

whether to close certain locations or open new locations, or expand at other existing locations that we

ignore here).

Let Mi be the maximum number of cars that the firm has available in location i, i = 1, . . . ,N. Suppose

there are J possible car types (i.e. individual makes and models of cars), and the firm has adopted a rental

rate structure R where initially we adopt the simplication that a rental rate plan for car type j at location i

consists of two numbers {(Rl
i j,R

s
i j)} representing flat daily rental rates for long and short term rentals for

each car type j at rental location i. Thus a rental rate structure consists of the complete array of all rental

prices at all rental locations, R = {(Rl
i j,R

s
i j), j = 1, . . . ,J, i = 1, . . . ,N}. Actually, the rental rate structure

can become considerably more complicated than this once we consider generalizations of rental contracts

that can include odometer-based discounts as we have considered in this analysis, and rental rates that

depend on number of kilometers driven and not just a flat per day fee with unlimited kilometers.

Let Vi j(R ) denote the expected discounted value of profits from a car of type j in rental location i under

the assumption tha the firm follows an optimal replacement strategy for each car type j at each location i

under rental rate structure R . Let P j be the new purchase price of car type j. Then we can formulate the

overall “optimal rental operations problem” as the following programming problem

max
R

max
{Ni j}

N

∑
i=1

J

∑
j=1

Ni j[Vi j(R )−P j] subject to:
J

∑
j=1

Ni j ≤ Mi, i = 1, . . . ,N. (27)

Nested within this problem is the regnerative optimal stopping problem, that we have solved in this paper,

that delivers the value function Vi j(R ) for all car types at all of the firm’s rental locations. This formulation

of the problem assumes that the firm is not “liquidity constrained” and chooses a rental structure and

vehicle portfolio allocation to maximize its overall net value of profits. With better data on all of the

company’s rental locations and customer data, it may be possible to solve this programming problem.

But we note that there are still other complications. We have suppressed the dependence on the rental

rate structures Rc of the company’s competitors, c ∈ C. There is clearly a larger competitive game, and
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the firm’s value and the optimal strategy for selecting its vehicle portfolio and rental rate structure will

clearly depend on the portfolios and rental rate structures chosen by its competitors. Solving this overall

competitive equilibrium problem remains a challenging area for future research.

8 Conclusion

We view this paper as providing both a practical and methodological contribution.

From a methodological point of view, we have shown how it is possible to integrate econometric dura-

tion models and (regenerative) optimal stopping theory in order to evaluate the profitability of the operating

strategy of a firm. Further, we have shown how this apparatus can be used to test the hypothesis that the

firm is a profit maximizer, and we have provided convincing evidence that the firm is not maximizing

discounted profits.

The practical contribution of the paper is to provide both a framework and concrete computer code that

enables us to characterize in a great deal of detail, the precise form of a profit maximizing replacement

strategy for this firm. Our work can therefore result in actual application of theory that may have a concrete

practical benefit to this firm and similar firms in the rental car business.

Our study relates to the recent econometric literature on “treatment effects” that attempts to predict the

impact of various “treatments” that might be given to a “subject”. In this terminology, the company is the

“subject” under consideration, and the “treatment” we are suggesting is the strategy of keeping its rental

vehicles longer before they are sold, combined with offering its customers appropriate discounts to induce

them to rent the older vehicles in its fleet. The “treatment effect” we are interested in measuring is the

increase in returns or discounted expected profits from adopting the suggested treatment.

In the treatment effects literature, the “gold standard” is to use controlled, randomized experiments

to measure the treatment effect by comparing the outcomes for a randomly selected treated group to the

outcomes for a control group. It would be possible for this company to conduct an experiment to evaluate

the profitability of the alternative replacement and rental strategy we are suggesting, but it might difficult to

design an idealized randomized controlled experiment where we can compare treatment and control groups

at the same point in time. In particular, while it might be possible to randomly assign car ID numbers to

those in a “treatment group” and those to a control group (i.e. the control group would be governed by

the company’s existing or status quo replacement and rental policy), there is a danger of various types

of “contamination” between the treatment and control groups. In particular, if managers find out that
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the treatment effect is positive, (i.e. that replacing rental cars less frequently is indeed more profitable),

they are likely to be tempted to also replace cars in the control group less frequently, and it this occurs,

the measured “treatment effect” could appear to be zero. Similarly, rental customers who are randomly

assigned to the treatment group (i.e. being offered the option to rent an older vehicle at a discount) may

inform others that they know about this “deal” and other customers who are not randomly assigned to the

treatment may request the treatment, and again this creates a temptation for managers to offer the same

deal to customers in the control group.

For these reasons, different types of “quasi experiments” are likely to be undertaken. An example is to

choose the treatment group to be all cars at a completely different rental location than the control group, or

to focus on a given rental location and conduct a “before and after” test, by adopting the new replacement

and rental strategy for a given make/model of rental cars at a specific rental location and compare the

profits earned on the cars that were subject to the new replacement policy with the profits earned by the cars

subject to the pre-existing status quo replacement policy. There are various sources of contamination in

the measured treatment effects of both of these types of quasi experiments. In the before/after experiment,

the treatment effects could be confounded by “macro/time effects,” i.e. the economy and thus rental rates,

rates of arrival of rental customers, maintenance costs and so forth could be different in the “after” period

than in the “before” period, and so some of the measured treatment effects could actually be due to these

other factors. Similarly, if the company were to conduct an an experiment in location B and compare

the profits to those earned at location A (which continues to use the status quo replacement policy), the

treatment effects could be confounded by “location effects” (i.e. different rental rates and arrival rates of

rental customers, and different driving patterns and durations of rentals, etc.).

Some of these problems can be controlled for by adopting a third “blind control group” and using

a “difference in difference” econometric strategy. Thus, for the example of a “before-after” experiment,

while the treatment could be applied to a specific make/model of rental vehicles, the treatment could be

withheld to another similar vehicle class which we could think of as the “blind control group”. Then we

could compare the difference before and after profit outcomes in the blind control group to the difference

in before and after profit outcomes of the treatment group, and assume that the macro/time effects operate

similarly for cars in both the treatment and blind control groups. Then any change in profitability in the

blind control group could be ascribe to these macro/time effects, and thus, to the extent that the change in

profits for cars in the treatment group was greater or less than this baseline, we would ascribe the difference

to the “causal effect” of the treatment. Similarly, in the case where the treatment group is in location B
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and the control group is chosen in rental location A, we can choose a blind control group to be rental cars

of a similar make and model that are rented at both locations A and B. Thus, differences in profits in the

blind control group would capture location effects, and thus, the “treatment effect” would be measured by

the extent to which the profits in location B exceed profits in location A, less the difference in profits of

the cars in the blind control group in these two different locations.

This suggests that it is possible to “test” the predictions of our econometric model using experimental

or “quasi experimental” methods. The use of blind control groups and difference in difference methods

can help to control for some of the shortcomings of quasi experimental methods when true controlled

randomized experiments are not feasible. However in either case, a major drawback of experiments is

the time and expense of conducting them. The advantage of computerized models is that millions of

“experiments” can be conducted under fully ideal conditions in a computer in a matter or minutes or hours,

compared to many years that would be required to follow cars in a treatment group from new purchase,

over their (longer) lifespans, until all of them were sold. However the drawback to computerized models

is the issue of credibility, i.e. does the computerized model provide a sufficiently accurate model of reality

to be trusted? We have attempted to answer this via the use of computerized simulations, by showing

that our simulations provide close approximations to actual outcomes. However ultimately, the company

(especially if it is risk averse) may want to conduct real experiments rather than rely completely on the

predictions of a computerized model. However if the company finds these results sufficiently convincing

to undertake experiments and other forms of data gathering necessary to evaluate its decision making and

determine if there are profitable modifications it could make to its operating policies, then we think it could

represent a “win-win” situation for science and for firms and other decision makers. To our knowledge,

most companies do not have access to advanced scientific methods to evaluate and inform their decision

making, and at the same time, economists rarely have access to firm data and the ability to suggest/conduct

experiments that help them to improve and update their models.

Our hope is that this study will provide a practical example of how scientific methods can be of use,

and the results will be sufficiently convincing to induce this company (and other companies) to make

greater use of these methods and to undertake the additional experiments and data gathering necessary to

validate the models and provide information about unknowns needed by the models to characterize optimal

strategies and make accurate predictions of their actual effects.
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